Integrated Planning and Coordinated Allocation of DG and DSTATCOM Considering Radial Distribution Network Reconfiguration
DOI:
https://doi.org/10.64470/elene.2026.21Keywords:
CTLBO, Distributed Generation, DSTATCOM, Network reconfiguration, , Radial distribution systemsAbstract
In order to enhance the operational efficacy of distribution power networks (DPNs) across techno economic and environmental aspects within a real-time operational framework, meticulous regulation of active as well as reactive power is imperative. In the present study, a Comprehensive Teaching-Learning based Optimization (CTLBO) algorithm is employed for network reconfiguration (NR) and optimal allocation of Distributed generations (DGs) along with Distribution Static Synchronous Compensators (DSTATCOMs) for single-objective in the IEEE 33-bus radial distribution systems (RDSs). Several case studies demonstrate that simultaneous NR and DGs along with DSTATCOM allocation is the most effective solution for reduction of network active power losses ultimately reduces operational costs and emission. The results further demonstrates the superiority in terms of convergence characteristics, solution robustness and global optimality of the CTLBO algorithm under complex , multi-criteria constraints for NR and DGs along with DSTATCOM allocation in RDS against established bio-inspired metaheuristics such as the Gravitational Search Algorithm (GSA), Fireworks algorithm (FWA), Harmony Search Algorithm (HSA), Genetic Algorithm (GA) and Refined genetic algorithm (RGA).
Downloads
References
Alam, S., Islam, S., & Kannan, N. I. (2018). Optimal distributed generation integration using mixed-integer nonlinear programming in radial distribution networks. Energies, 11(12), 1–18.
Amin, A., Ebeed, M., Nasrat, L., Aly, M., Ahmed, E. M., Mohamed, E. A., Alnuman, H. H., & Abd El-Hamed, A. M. (2022). Techno-economic evaluation of optimal integration of PV-based DG with DSTATCOM functionality considering solar irradiance and loading variations. Mathematics, 10(14), 2543.
Balamurugan, P., Yuvaraj, T., & Muthukannan, P. (2018). Optimal allocation of DSTATCOM in distribution networks using whale optimization algorithm. Engineering Technology & Applied Science Research, 8(6), 3543–3547.
Balu, P., Rajan, R., & Senthil Kumar, S. (2021). Optimal DG allocation in radial distribution systems using student psychology-based optimization algorithm. Energies, 14(3), 1–14.
Chinnaraj, S., Kumar, R., & Thenmozhi, K. (2020). Multi-objective simultaneous placement of DG and DSTATCOM using LSF and LSA-SM in radial distribution networks. Journal of Applied Research and Technology, 18(6), 331–340.
Chinnaraj, S., Thenmozhi, K., & Kumar, R. (2020). Optimal integration of DG and DSTATCOM in distribution networks using cuckoo search algorithm. Energies, 13(11), 1–20.
Da Silva, I. C., Carneiro, S., de Oliveira, E. J., Costa, J. S., Pereira, J. L. R., & Garcia, P. A. N. (2008). A heuristic constructive algorithm for capacitor placement on distribution systems. IEEE Transactions on Power Systems, 23(4), 1619–1626.
Das, D. (2008). Optimal placement of capacitors in radial distribution system using a fuzzy–GA method. International Journal of Electrical Power & Energy Systems, 30(6–7), 361–367.
Dash, N. S., Kale, V. S., Nandini, P. S., & Duppala, D. (2021). SAR based optimal allocation of DG, DSTATCOM and reconfiguration of distribution system. In Proceedings of the International Conference on Advances in Power, Signal, Control and Computation (pp. 41–53). Springer.
El-Arini, M. M., El-Fergany, A. A., & Hasanien, H. M. (2024). Simultaneous DG, capacitor and reconfiguration planning using improved grey wolf optimizer. Heliyon, 10(2), 1–13.
El-Zonkoly, A. M. (2011). Optimal placement of multi-distributed generation units including different load models using particle swarm optimisation. IET Generation, Transmission & Distribution, 5(7), 760–771.
Haldar, V., & Chakraborty, N. (2015). Power loss minimization by optimal capacitor placement in radial distribution system using modified cultural algorithm. International Transactions on Electrical Energy Systems, 25, 54–71.
Hung, D. Q., & Mithulananthan, N. (2014). Loss reduction and loadability enhancement with DG: A dual-index analytical approach. Applied Energy, 115, 233–241.
Imran, A. M., Kowsalya, M., & Kothari, D. P. (2014). A novel integration technique for optimal network reconfiguration and distributed generation placement in power distribution networks. International Journal of Electrical Power & Energy Systems, 63, 461–472.
Injeti, N., & Yemula, V. K. (2020). Optimal placement of distributed generation considering plug-in electric vehicles using hybrid BO–PSO. Energies, 13(9), 1–19.
Kannemadugu, R. P., Adhimoorthy, V., & Lakshmi Devi, A. (2025). An effective GTO algorithm-based cost–benefit analysis of DISCOs by optimal allocation of DG and DSTATCOM in a radial distribution network. ITEGAM-JETIA, 11(51), 1–8.
Khan, M. H., Ulasyar, A., Khattak, A., Zad, H. S., Alsharef, M., Alahmadi, A. A., & Ullah, N. (2022). Optimal sizing and allocation of distributed generation in the radial power distribution system using honey badger algorithm. Energies, 15(16), 5891.
Lakervi, E., & Holmes, E. J. (1996). Electricity distribution network design. Institution of Engineering and Technology.
Luo, L., Gu, W., Zhang, X. P., Cao, G., Wang, W., Zhu, G., You, D., & Wu, Z. (2018). Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM). Applied Energy, 210, 1092–1100.
Marjani, S. R., Talavat, V., & Galvani, S. (2018). Multi-objective placement and sizing of D-STATCOM in radial distribution networks using MOPSO and TOPSIS. International Transactions on Electrical Energy Systems, 28(10), 1–19.
Mohamed, A. A., Hemeida, M. R., & El-Fergany, A. A. (2022). Optimal allocation of DG and DSTATCOM in radial distribution systems using improved grey wolf optimizer with sensitivity analysis. International Journal of Electrical Power & Energy Systems, 141, 1–13.
Moravej, Z., & Akhlaghi, A. (2013). A novel approach based on cuckoo search for DG allocation in distribution network. International Journal of Electrical Power & Energy Systems, 44(1), 672–679.
Otuo-Acheampong, D., Duku, R., Rashed, G. I., Mensah, A. A., & Haider, H. (2023). Application of optimal network reconfiguration for loss minimization and voltage profile enhancement of distribution system using heap-based optimizer. International Transactions on Electrical Energy Systems, Article ID 9930954.
Patel, P., Patil, N., Mohsen, A., Kashyap, A., Hasan, N. A., Karthikeyan, A., Thatoi, D. N., Gupta, D., & Kamranfar, A. (2025). Multi-objective particle swarm optimization algorithm-based method for optimal placement and sizing of distributed generations and shunt capacitors in a radial distribution network. Results in Engineering, 27, 106514.
Pegado, R., Ñaupari, Z., Molina, Y., & Castillo, C. (2019). Radial distribution network reconfiguration for power losses reduction based on improved selective BPSO. Electric Power Systems Research, 169, 206–213.
Quadri, I. A.., Bhowmick, S., & Joshi, D. (2018). A comprehensive technique for optimal allocation of distributed energy resources in radial distribution systems. Applied Energy, 211, 1245–1260.
Quadri, I. A., Bhowmick, S., & Joshi, D. (2018). Multi-objective approach to maximise loadability of distribution networks by simultaneous reconfiguration and allocation of distributed energy resources. IET Generation, Transmission & Distribution, 12, 5700–5712.
Razavi, S. M., Momeni, H. R., Haghifam, M. R., & Bolouki, S. (2020). Multi-objective stochastic distribution network reconfiguration with renewable energy resources using improved crow search algorithm. arXiv preprint, arXiv:2009.09472.
Reddy, K. R., Kumar, M. S., & Kumar, P. R. (2023). Optimal placement of DG and D-FACTS for active and reactive power loss minimization in distribution networks. Journal of Applied Research and Technology, 21(1), 25–37.
Salimon, S. A., Adebayo, I. G., Adepoju, G. A., & Adewuyi, O. B. (2023). Optimal allocation of distribution static synchronous compensators in distribution networks considering various load models using the black widow optimization algorithm. Sustainability, 15(21), 15623.
Samala, R. K., & Kotapuri, M. R. (2020). Optimal allocation of distributed generations using hybrid technique with fuzzy logic controller radial distribution system. SN Applied Sciences, 2, 191.
Salkuti, S. R. (2022). An efficient allocation of D-STATCOM and DG with network reconfiguration in distribution networks. International Journal of Advanced Technology and Engineering Exploration, 9(88), 299–309.
Sambaiah, S., & Reddy, K. (2020). Simultaneous reconfiguration, DG and DSTATCOM allocation using grasshopper optimization algorithm. Energies, 13(24), 1–24.
Santos, S. F., Fitiwi, D. Z., Cruz, M. R. M., Cabrita, C. M. P., & Catalão, J. P. S. (2017). Impacts of optimal energy storage deployment and network reconfiguration on renewable integration level in distribution systems. Applied Energy, 185(1), 44–55.
Shaheen, A., Elsayed, A., Ginidi, A., El-Sehiemy, R., & Elattar, E. (2022). Reconfiguration of electrical distribution network-based DG and capacitors allocations using artificial ecosystem optimizer: Practical case study. Alexandria Engineering Journal, 61(8), 6105–6118.
Shukla, V., Mukherjee, V., & Singh, B. (2023). Integration of distributed generations and static var compensators with static synchronous compensators to reduce power losses. Engineering Applications of Artificial Intelligence, 126, 107208.
Sirat, A. P. (2019). Stochastic modeling for optimal placement of distributed generation in radial distribution networks. arXiv preprint, arXiv:1911.06748.
Solati, A., Shojaei, A. A., Soltani, S., & Hosseini, S. A. (2025). Fuzzy-based multi-objective optimal allocation of capacitors and DSTATCOMs to minimize installation cost and power loss and improve voltage profile. IET Renewable Power Generation, 19, e70018.
Srinivasa Rao, R., Ravindra, K., Satish, K., & Narasimham, S. V. L. (2013). Power loss minimization in distribution system using network reconfiguration in the presence of distributed generation. IEEE Transactions on Power Systems, 28(1), 317–325.
Tolabi, H. B., Ali, M. H., & Rizwan, M. (2015). Simultaneous reconfiguration, DG and DSTATCOM allocation in radial distribution systems using a fuzzy–ACO approach. Turkish Journal of Electrical Engineering & Computer Sciences, 23(6), 1571–1587.
Weqar, B., Khan, M. T., & Siddiqui, A. S. (2018). Optimal placement of distributed generation and D-STATCOM in radial distribution network. Smart Science, 6(2), 125–133.
Yaghoobi, J., Islam, M., & Mithulananthan, N. (2018). Analytical approach to assess the loadability of unbalanced distribution grid with rooftop PV units. Applied Energy, 211, 358–367.
Yuvaraj, T., Ravi, K., & Devabalaji, K. R. (2017). DSTATCOM allocation in distribution networks considering load variations using bat algorithm. Ain Shams Engineering Journal, 8(3), 391–403.
Yuvaraj, T., & Ravi, K. (2018). Multi-objective simultaneous DG and DSTATCOM allocation in radial distribution networks using cuckoo search algorithm. Alexandria Engineering Journal, 57(4), 2729–2742.
Downloads
Published
Data Availability Statement
All the relevant data is included in the manuscript.
Issue
Section
License
Copyright (c) 2025 Imran Ahmad Quadri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright of their work and grant the journal the right to publish it under the Creative Commons Attribution 4.0 International License (CC BY 4.0). This allows for maximum dissemination and reuse with appropriate citation.
ORCID 