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1. Introduction

The transition from a regulated, vertically integrated structure to a deregulated market structure has created
a profound change in the electric power system. The unbundling of the generation, transmission and
distribution sectors has introduced market competition, allowing several generating companies (GENCOs)
to participate in electricity generation and trading. The goal of these generating companies has now switched
from minimizing costs of operating power plants, to maximizing profit by optimizing the scheduling and
operation of power plants while adhering to operational and regulatory constraints (Abdi, 2021).

Traditional optimization models such as Mixed Integer Linear Programming (Gilvaei et al., 2021), Lagrangian
Relaxation (Sudhakar et al., 2017) and Dynamic Programming (Putz et al., 2021) have been utilized to tackle
the profit maximization problem and although these approaches are quick and easy to implement, they suffer
from solution-quality problems (Shukla et al., 2015). They ate ineffective for large-scale and highly dynamic
power systems, and the uncertainty and non-linearities of deregulated markets are not properly handled by
these approaches. Therefore, interest in alternative optimization methods has increased, chief among them
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being metaheuristic algorithms.

Metaheuristic optimization algorithms are a class of optimization algorithms used to solve complex
optimization challenges across multiple domains (Abdel-Basset et al., 2018). They play a crucial role in
optimization due to their inherent adaptability and efficacy in addressing complex optimization problems
where traditional or exact algorithms may fail due to their computational intensity, especially in high-
dimensional, nonlinear, or multi-modal search space (Benaissa et al., 2024) s. In optimization problems, the
best possible solution is found using mathematical theorems, which is better as opposed to evaluating every
possible solution (Tomar et al., 2023). Some of these metaheuristic algorithms include the Particle Swarm
Optimization (PSO) (Kennedy et al., 1995) Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), African
Vultures Optimization Algorithm (AVOA) (Abdollahzadeh et al., 2021), War Strategy Optimization (WSO)
(Ayyarao et al., 2022) and Dung Beetle Optimizer (DBO) (Xue & Shen, 2023).

Researchers have employed metaheuristic algorithms in addressing the profit maximization problem of
generating companies. Ravichandran and Subramanian (2020) addressed the profit maximization problem
in a deregulated market using the Elephant Herding Optimization (EHO) algorithm to achieve maximum
profits while considering various constraints and tested the algorithm against a 3-unit and 10-unit system.
The algorithm obtained higher profits as compared to other metaheuristic algorithms but suffers from local
optima entrapment. Kumar et al. (2023) utilized the Monarch Butterfly Optimization (MBO) algorithm to
tackle the profit maximization problem and tested the algorithm on 10-unit and 100-unit systems over a 24-
hour schedule. It showed improvements in profit as compared to two other algorithms, however, the
algorithm had poor convergence capabilities. Dhaliwal and Dillon (2019) proposed a Memetic Binary
Differential Evolution algorithm for profit maximization for generating companies in a deregulated energy
system. The algorithm combined Binary Differential Evolution for global search with Binary Hill Climbing
for local search. The algorithm showed significant improvement compared to other algorithms, however,
had a long computational time and did not account for dynamic market price fluctuations.

Durga and Gayathri (2024) tackled the profit maximization problem using the Chaotic Sea-Horse Optimizer
to maximize GENCO profits. The paper applied chaotic mapping techniques to the standard Sea-Horse
Optimizer (SHO) to enhance its performance. Tested on IEEE-39 bus system, the algorithm realized higher
profits compared to the Genetic Algorithm and the Muller Method. Sahoo and Hota (2019) proposed the
Moth Flame Optimization algorithm for maximizing profit of generating companies while minimizing
societal costs. The algorithm was tested on the IEEE-30 bus system and the algorithm obtained higher
profits compared to the Particle Swarm Optimizer and the Genetic Algorithm. Senthilvadivu et al. (2018)
proposed an Exchange Market Algorithm to address the profit maximization problem for GENCOs in a
deregulated electricity market and was tested on the IEEE-39 bus system with 10 units. It was seen to achieve
higher profits as well compared to SFLA and MPPD-ABC. However, in all 3 papers, the algorithms lacked
scalability analysis for larger systems and gave the impression of overfitting as it was tested on only one
power system.

Ghadi et al. (2016) proposed an Imperialist Competitive Algorithm (ICA) with a cascaded ICA-PSO
constraint-handling method to solve the profit maximization problem for GENCOs. The algorithm was
tested on 10, 40 and 100-unit systems over 24 hours and outperformed the Particle Swarm Optimizer in
terms of the profit obtained. Comparison of the algorithm’s performance however was done against only
one other optimization algorithm and does not demonstrate how the approach performs relative to a broader
set of established algorithms. Krishna and Sao (2016) presented an Improved Teaching-Learning-Based
Optimization (I-TLBO) to solve the profit maximization problem in a deregulated environment. An adaptive
teaching component, multiple teachers, tutorial-based learning and self-motivated learning were introduced
to enhance the standard TLBO. Tested on the IEEE-39 bus system over 10 hours, I-TLBO achieved a profit
of $91,120. The method however, lacked comparison with other algorithms, making it difficult to assess its
relative effectiveness or contribution.
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There is therefore the need to select an algorithm that demonstrates good convergence capabilities, strong
exploratory capabilities and a fast execution time. The selected algorithm should be tested on systems of
varying size amidst various limitations, and its results should be compared with well-established
metaheuristic algorithms previously utilized for profit maximization problems to effectively evaluate its
performance and validity.

Numerous metaheuristic algorithms have emerged over time, encompassing human-inspired, physics-based,
evolution-based and swarm intelligence-based algorithms. Majority of the algorithms are population-based,
meaning they operate on a set of possible solutions that are iteratively refined to arrive at the optimal solution
(Tomar et al., 2023). Despite their differing inspirations, population-based metaheuristic algorithms generally
follow a similar framework consisting of two stages: exploration and exploitation (Lin & Gen, 2009). During
exploration, the algorithm performs a global search of the solution space, where movements are highly
randomized to ensure diversity. The most promising regions in the search space identified earlier are then
investigated (Mirjalili & Lewis, 2016). Although these algorithms have many advantages, they still suffer from
limitations such as slow convergence rates and a poor balance between exploration and exploitation leading
to convergence to suboptimal solutions (Benaissa et al., 2024; Shehab et al., 2024).

The whale optimization algorithm is a novel swarm intelligence-based metaheuristic algorithm that has been
employed extensively to solve complex optimization problems because of its simplicity and ease of
implementation. The algorithm mimics the hunting behaviour of humpback whales and mathematically
models three key stunts which are encircling prey, bubble-net attacking method (exploitation phase), and
search for prey (exploration phase)(Mirjalili & Lewis, 2016). The whale optimization algorithm has been seen
to handle optimization problems in industry and engineering effectively (Gharehchopogh & Gholizadeh,
2019), and has been utilized in many studies such as resource allocation in wireless networks (Pham et al.,
2020), clustering (Nasiri & Khiyabani, 2018) and engineering design problems such as welded beam design
(Zhou & Hao, 2025). The algorithm, however, has deficiencies consistent with metaheuristic algorithms.
There is an imbalance in exploitation and exploration, and the algorithm suffers from premature convergence
to suboptimal solutions and slow convergence rates (Wei et al., 2025).

In light of this, many researchers have incorporated vatious strategies into the standard WOA to address
these issues and improve its performance. Deepa and Venkataraman (2021) proposed an enhanced Whale
Optimization Algorithm based on Levy Flight mechanism (Levy WOA). The integrated Levy flight
mechanism improves the algorithm’s ability to break out of local optima and diversifies the population.
However, this method introduces uncontrolled large jumps which may take the solution out of a search
space in smaller search spaces. Di Cao et al. (2023) presented an Enhanced WOA (EWOA), that combines
Improved Dynamic Opposite Learning (IDOL) with an adaptive encircling prey stage. Although improving
exploration-exploitation balance, the improvement drastically increases the computational time and
complexity of the algorithm. To address the issues of poor local search capability and local optima
entrapment, Liu et al. (2023) suggested a Whale Optimization Algorithm with Combined mutation and
Removing similarity (CRWOA). Despite the improved convergence speed and solution quality as compared
to other algorithms, the population diversity still drops sharply during later iterations, which makes the
algorithm prone to stagnation. Qu et al. (2024) proposed the Spiral-Enhanced Whale Optimization
Algorithm, which incorporates a non-linear time-varying self-adaptive perturbation strategy and an
Archimedean spiral structure. This improved solution accuracy of the algorithm but increased the complexity
of the algorithm since the disturbance factor introduced needs complex tuning. Gao et al. (2021) proposed
the Skew Tent Nonlinear Whale Optimization Algorithm (STNWOA) to address problems of local optima
trapping and slow convergence speed. The improved algorithm however was tested only on a few benchmark
functions and its performance across diverse problem types is not confirmed. Therefore, there remains the
need to improve the WOA to holistically address the problems of premature convergence, local optima
entrapment and proper exploration-exploitation balance while maintaining simplicity and fast convergence

Danso et al. (2026), Electr. Eng. Energy



Electrical Engineering and Energy | (2026) 5:1

speeds.

This study introduces an improved WOA, termed CWOA-IW, which incorporates chaotic mapping and
inertia weight to address these deficiencies. The initial population is generated with a cubic chaotic map,
enhancing diversity, and reducing the risk of premature convergence. Inertia weight is incorporated into the
position-update mechanism to help the algorithm escape local optima and dynamically balance exploration
and exploitation. The proposed CWOA-IW is then applied to the profit maximization problem for
generating companies, taking into account the various limitations and complexities of power system
operations. The remainder of this paper is structured as follows: The objective function for the profit
maximization problem is formulated in Section 2. The conventional whale optimization algorithm is
described in Section 3. The proposed CWOA-IW using chaotic mapping and inertia weight theories is
presented in Section 4. The developed profit maximization tool is described in Section 5. Section 6 presents
the benchmark functions and the power system test beds used to test the efficacy of the improved model
and the optimization tool. The results of the improved CWOA-IW algorithm and the profit maximization
tool with a comparative analysis against other optimization algorithms is shown in Section 7. Conclusions
are drawn in Section 8.

2. Problem Formulation

With the transition from a traditionally regulated market to a deregulated one, the objective function of
GENCOs shifts solely from minimizing cost to maximizing profits, while ensuring grid stability and
reliability under operational and market constraints such as forecasted demand, fluctuating electricity prices
and generation limits (Abdi, 2021; Shukla et al., 2015). The elements of the objective function and constraints
associated with the problem are covered in this section.

2.1 Objective function

The GENCO’s profit is defined as the difference between the total revenue obtained from the sale of
electricity at market price and its total operating costs, expressed in Equation (1).

Maximize PF = TR — TC 1

PF is the profit of the GENCO, TC is the total operating cost of the GENCO and TR is the total revenue
of the GENCO. The total operating cost (T'C) of the GENCO is expressed as a function of the fuel cost of
power generated by each unit at each time # the start-up cost and the commitment status of each unit as
expressed in Equation (2).

TC = ?=1Z§\I=1[Fi(Pgit) +5UCi,t]-Xit 2)

T is the scheduling time horizon, t is the time index, N is the total number of thermal generating units and
i is the generating unit index. F; is the fuel cost function of unit i, Pgf is the power output of unit i at time

t, SUC; ¢ is the start-up cost of unit i at time ¢ and X} is the commitment status of unit i at time t.

The total revenue (TR) obtained by a GENCO from selling power is expressed as a function of the power
generated by each unit at each time 7 the forecasted market price of electricity at that time, and each
generating unit’s commitment status, and is given by Equation (3).

TR = ZI=1Z?]=1(Pgit-F5Pt)-Xit ©)

whete FSP, is the forecasted market price at time t.
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2.2 Constraints

Generating companies cannot increase profit infinitely and are met with limitations that influence how they
operate. The constraints used in this study are:

2.2.1 System demand constraint

Throughout the whole scheduling period, GENCOs produce power such that the total power output of
committed units is either equal to or less than the power demand at each time interval. The system demand
constraint is mathematically modelled as Equation (4).

N, pgt.xt <PD 4)

where PD is the load demand at time t.

2.2.2 Unit generation limit constraint

There are inherent limits on the maximum and minimum power that each generating unit can produce when
committed. The generation bounds for committed units are defined as Equation (5).

Pi™ < Pgf < PJI o)

P;’l-l M is the minimum power generation limit of unit { and P;iI 4% is the maximum power generation limit of
unit I.
2.2.3 Unit minimum up/down time

Each generating unit must satisfy minimum-up time and minimum-down time constraints. Once a unit is
committed, it must remain on for a set period (minimum up time), and once shut down, it must remain off
for a set period (minimum down time). The minimum up/down time constraints ate expressed in Equation

©).
T'O‘rl > Tup . Toff > T'dOWTl 6
o= s =2 0 6)

where T™and Tiof T tepresent the on and off durations of unit i respectively, and T'P and T

represent the minimum up and down times of unit i respectively.

2.2.4 Unit ramp up/down rates

The ramp rate of a generating unit refers to the maximum change in output power that operators can apply
within a given time interval. These limits are defined by the ramp-up and ramp-down constraints, which are
modelled as Equation (7).

Pgt — Pgt™* < UR;; Pgt™' — Pgf < DR; @)

P gf is the power output of generating unit I at time t, P gf ~Lis the power output of generating unit { at

the previous time period, UR; is the ramp-up limit of unit { and DR; is the ramp-down limit of unit .

3. Whale Optimization Algorithm

The Whale Optimization Algorithm is a well-known optimization technique inspired by nature that has
applications in data science, engineering, medicine, and economics (Nasiri & Khiyabani, 2018; Pham et al.,
2020; Wei et al., 2025; Zhou & Hao, 2025). The algorithm was proposed in 2016 by Seyedali Mirjalili and
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Andrew Lewis, and is inspired by the distinctive hunting behaviour of humpback whales, particularly their
bubble-net feeding approach (Mirjalili & Lewis, 2016). This behaviour involves whales creating bubbles in a
spiral pattern to encircle and trap prey. In WOA, a set of candidate solutions, referred to as whales, are
initialized randomly within defined boundary conditions. The position of each whale is updated iteratively
using analytic systems which mimic two key behaviours: search for prey (exploration) and encircling prey or
bubble-net attacking (exploitation). The position update is guided by parameters such as a random coefficient
vector (A), a random number (r) between 0 and 1, and a logarithmic spiral constant (b), as shown in the
position update equations. During iterations, the algorithm evaluates the fitness of each whale against the
given objective function, updating the best-known solution until an optimal solution is found or a stopping
criterion, such as a maximum number of iterations, is met. The simplicity and effectiveness of WOA have
led to its rapid adoption for solving complex optimization problems.

3.1 Encircling Prey

The initial phase of the whales' hunting strategy involves encircling their prey. WOA treats the current
optimal whale, denoted as X *, as the target prey or as close to the optimum. All other whales adjust their

positions based on X* using Equation (8) and (9) (Mirjalili & Lewis, 2016) is

Xt+1)=X(t)—A-D ®)
D=|C-X*(t) - X(t)| ©)

- - -
A and C represent coefficient vectors and t is the current iteration. In each iteration, X is updated if a

better solution is found.

The vectors A and C are calculated with Equation (10) and (11) respectively.

(9 YN
Il

2d-7—d ®
2.7

&)

7 is a random vector in [0,1] and d is linearly reduced from 2 to 0 across iterations (in both exploration and

exploitation phases).

3.2 Bubble-net Attacking Strategy

The bubble-net attacking strategy of humpback whales is modelled as the exploitation phase (Kaveh &
Ghazaan, 2017). During this stage, whales encircle their prey by exhaling bubbles in a circular pattern,
gradually narrowing the bubble ring to trap the prey in a confined area. The whale then ascends in a spiral
trajectory to capture the prey. This behaviour is mathematically represented using two key mechanisms: the
Shrinking Encircling mechanism and the Spiral Updating Position. The shrinking encircling mechanism is
implemented by reducing the value of the control parameter d, which limits the movement range and
simulates the tightening of the search space. The spiral update position uses a spiral equation to mimic the
whale’s helical movement toward the prey. Together, these mechanisms guide individual whales toward the
best-known position, enhancing local search capability and refining solution accuracy. Update of the whale
at this stage is done using Equation (12).

X(t+1)=D"-eP . cos(2ml) + X*(t) (10)

The whales simultaneously swim in a spiral pattern and in a shrinking circle around the prey. To model this
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behaviour, a probability of 50% is assumed for choosing between either movement in updating the position
of whales. The mathematical model for updating positions by the whales at this stage is given in Equation

(13).
Xt+1) = {ﬁ(t) —4-D ; fp<05 (1)
D'-ebt.cos(2ml) + X*(t) ifp =0.5

3.3 Search for prey

At this point, when |A| > 1, the current whale randomly selects an individual whale from the present
population to update its position to conduct a global seatch, thereby preventing the population from
converging early on a locally optimum solution. Its mathematical model is similar to Equation (8) and (9),
except that the optimal individual is replaced by a randomly chosen one.

Xt+1) =X gng(t)—A-D 14)

-

5 = |C ')?rand(t) _)_()(t)| (15)

- - -
A and C are coefficient vectors, t indicates the current iteration, Xyqnq is the position vector of the randomly

5
selected whale and X is the position vector of the current whale.

4. Proposed Chaotic Whale Optimization Algorithm with Inertia Weight

Similar to other metaheuristic algorithms, WOA exhibits limitations that reduce its accuracy and
effectiveness in tackling specific optimization tasks. Previous studies and critical reviews (Gharehchopogh
& Gholizadeh, 2019; Mohammed et al., 2019; Nadimi-shahraki et al., 2022) show that WOA has inefficient
search mechanisms (Nadimi-Shahraki et al., 2022), often resulting in premature convergence (Liu et al.,
2023), poor exploration-exploitation balance (Cao et al., 2023), stagnation away from optimal regions (Sun
et al,, 2019) and low population diversity (Gao et al., 2021). These performance deficiencies can often be
attributed to the algorithm’s controlling parameters and stages, particularly the initialization process and the
mechanisms that govern exploration and exploitation.

The initialization stage in WOA, which typically relies on uniform random population generation, lacks
strategic distribution and diversity enhancement mechanisms. As a result, the algorithm may begin with a
pootly distributed population, which affects its ability to effectively explore the search space and contributes
to low population diversity and early stagnation. Furthermore, the control parameters, particularly the linearly
decreasing coefficient a, the random vector r, and the spiral shape parameter b, play a pivotal role in steering
the search behaviour. The linear adaptation of a, intended to shift the algorithm gradually from exploration
to exploitation, often fails to respond dynamically to the problem landscape, thereby leading to poor search
strategies and unbalanced transitions between global and local search phases.

When the value of a reduces too quickly, exploration is prematurely abandoned, increasing the risk of
premature convergence; if a remains large for too long, the algorithm may stagnate far from optimal regions
due to insufficient exploitation. These shortcomings, coupled with static parameter control and simplistic
agent movement strategies, limit WOA’s performance in complex or high-dimensional optimization
problems. As evidenced in various studies, refining the initialization phase and adopting adaptive control
parameter schemes are essential for mitigating these issues and enhancing the overall robustness and
accuracy of the algorithm.

Another critical factor shaping WOA’s performance is its dependence on the current best whale during the
position update of the entire population. During exploitation, the movements of all whales are primarily
directed by the best solution identified thus far. While this leader-driven strategy facilitates rapid convergence
toward potentially optimal regions of the search space, it simultaneously increases the risk of premature
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convergence—particularly when the current best solution resides within a suboptimal region in the search
space (Gharehchopogh & Gholizadeh, 2019).

To address these shortcomings of the standard WOA relating to population diversity, premature
convergence, local optima entrapment and poor exploration-exploitation balance, two theoties are applied:
Chaotic mapping and Inertia weight.

Pseudocode of the WOA algorithm.

Initialize the whale’s population X; (1 =1, 2, ..., n)
Calenlate the fitness of each search agent
X*=the best search agent
while (t < maximum number of iterations)
for each search agent
Update a, A, C, [, and p
if (p<0.5)
If|A|<1)
Update the position of the current search agent by the Eq. (8)
else if (| A=1])

Select a random search agent ()_() rand)
Update the position of the current search agent by the Eq. (14)
end if
else if (p=0.5)
Update the position of the current search by the Eq. (12)
end if
end for
Check if any search agent goes beyond the search space and amend it
Calenlate the fitness of each search agent
Update X* if there is a better solution
t=t+1
end while
return X*

4.1 Chaotic mapping

The initial population’s quality and diversity greatly affect the performance of metaheuristic algorithms. The
standard WOA relies on random distributions, which may not sufficiently explore the solution space. To
address this, chaotic mapping techniques are incorporated into the initialization phase of the algorithm. Due
to its deterministic and ergodic properties, the chaotic map yields a more diverse initial population in the
search space (Gao et al., 2021).

In this study, the cubic chaotic map is utilized to produce the initial population. The chaotic sequence is
modelled in Equation (10).

X; = pXi-1(1-X;_41%), X; €(0,1) (12)

The chaotic parameter p quantifies how well the chaotic map distributes points over time. It governs the
sequence’s chaotic and ergodic behaviour. If p is too large, the sequence may diverge or become overly
chaotic and unstable. Conversely, if p is too small, the sequence may exhibit reduced ergodicity and tend
toward periodic behaviour. After conducting sensitivity analysis, the value of p is set to 2.59 for optimal
ergodic characteristics

The chaotic number X, is mapped to the it initial individual whale in the search space to generate initial
populations.
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4.2 Inertia weight

To further tune and balance the exploration and exploitation ability, an inertia weight factor is introduced in
WOA to scale the influence of the current best whale on generating the positions of individual whales in the
exploitation phase. The inertia weight coefficient is defined in Equation (17).

(Wmax— Wmin) - current iteration

W = Wnax — (13)

max number of iterations

The parameters Wy,q, and Wpip, tepresenting the maximum and minimum values of the inertia weight
respectively, are set to 0.9 and 0.4 after sensitivity analysis. The formula shows that during the eatly stages
of optimization, the weight coefficient is large, allowing for larger search steps and preventing local optima
trapping. As the optimization progresses, the weight coefficient decreases, enabling a more refined local
search that enhances both the accuracy and convergence speed. The new position update equations are
modelled in Equation (18) and (19). The update is done depending on the value of parameter p. When p is
greater or equal to 0.5, the whales update their position using Equation (19). However, when p is less than
0.5, the whales update their position using Equation (18).

Xt+D)=w-X*(t)-4-D 14)
)?(t+1) =ﬁ-ebl-cos(2nl)+w-)?*(t) (15)

W-)?*(t)—/f-ﬁ if p<0.5

~7 bl T . (16)
D'-e” -cos(2nl) +w-X*(t) ifp =205

Xt+1) = {

The flowchart of CWOA-IW incorporating the cubic chaotic map and inertia weight is shown in Figure 1.
5. Profit Maximization Tool

Using the improved CWOA-IW algorithm, the proposed optimization tool for solving the profit
maximization problem follows a structured procedure to maximize GENCO profits while adhering to
system and operational constraints. The process begins with the input of test system data, which includes
each generating unit’s generation limits, fuel cost coefficients, start-up costs, ramping rates, and minimum
up and down times. In addition, the power demand and market pricing data over the scheduling horizon are
provided as inputs to the tool.

Following this, the population initialization phase is carried out. Here, an initial set of candidate solutions
(representing the power dispatch schedules of the generating units within their defined limits) is generated
using the cubic chaotic map technique. This ensures a diverse starting population for the algorithm. Each
possible solution is then assessed in the objective function evaluation stage, where the profit of the generating
units is computed. The solution that yields the highest profit, along with its associated power dispatch
schedule, is recorded as the current best.

Subsequently, the parameter updating stage is performed. In this step, the CWOA-IW parameters (a, A, C,
1, p and w) are updated according to their respective governing equations. These updated parameters guide
the position updating process, during which the solutions are adjusted either with reference to the current
best solution or in relation to randomly selected solutions, thereby balancing exploration and exploitation.
To ensure feasibility, constraint handling techniques are applied to the updated solutions. If any constraints
such as generation limits, ramp rates, or minimum up/down times ate violated, penalties are imposed on the
profit values. This adjustment directs the search towards solutions that satisfy all system requirements. Once
adjustments are made, the objective function is re-evaluated, allowing the algorithm to determine the profit
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associated with the updated solutions.

This iterative cycle of parameter updating, position updating, constraint handling, and re-evaluation
continues until the termination criterion is met, typically determined by a maximum iteration number. At the
end of the process, the tool returns the optimal power dispatch schedule for the generating units along with
the maximum profit achievable under the given market and operational conditions. The flowchart illustrating
the developed profit maximization tool using CWOA-IW is shown in Figure 2.

[ Initialize the whale population using cubic chaotic map ]

v

[ Calculate the fitness of each search agent; choose best search agent

v

> Update a, A, C, 1, p & w

Update position of current Update position of current Update position of current
search agent by eq. (18) search agent by eq. (14) search agent by eq.(19)

Y.

[ Fitness evaluation for choosing next best search agent

Y

[ Update best search agent if there is a better solution

t=t+ 1}€ t < Max itr

No

[ Output best solution ]

Y

End

Figure 1 Flowchart of proposed CWOA-IW
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Input Test System Data ]

|

[ Initialize the population ]

(Dispatch of units within the generation limits)

|

Evaluate objective function (profit) and record
highest profit

|

Update CWOA-IW parameters

|

Update positions of population
(Refine solutions)

Y

Y

Apply constraint handling techniques

A

Evaluate profit of units

— Yes
t=t+1}€ t < Max itr
No
Output best solution
(Dispatch of units and maximum profit)

G

Figure 2 Flowchart describing profit maximization process

6. Testing of the Improved Algorithm and Optimization Tool
6.1 Benchmark Functions

The CWOA-IW algorithm’s efficacy was assessed using 23 classical benchmark functions obtained from
(Mirjalili & Lewis, 2016). These functions fall into three categories: unimodal, multimodal and fixed
dimension multimodal functions. Functions F1-F7 are unimodal since they have only one global optimum
and are often used to assess the exploration capabilities of the algorithm. Functions F8-F13 are multimodal
functions and functions F14 - F23 are fixed dimension multimodal functions, both with numerous local
optima whose number increases exponentially with the dimensions. A detailed description of all 23
benchmark functions is presented in Table 1.

The enhanced Chaotic Whale Optimization Algorithm with Inertia Weight (CWOA-IW) is compated with
the base WOA, the Grey Wolf Optimizer (GWO) and the Particle Swarm Optimizer (PSO). All simulations
were carried out in MATLAB R2022a on a computer with these specifications: Lenovo 20L8A0TRUK Intel
(R) Core (TM) i5-8250U CPU @ 1.60GHz and 8GB RAM. Sensitivity analysis was performed to obtain
optimum parameter tuning in testing the algorithms. The specific parameters of the proposed CWOA-IW
and compared algorithms are shown in Table 2.
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Table 1 Description of benchmark functions

Function Description Dim | Range frnin
Fl F1=3%, x? 30 | [~ 100,100] 0
F2 F2 = Y%l | + 1% x| 30 | [~ 10,10] 0
i 2 —
K3 F3=3%,(Tis,x)) 30 | [~ 100,100] 0
F4 F4 = max{|x;|,1 <i < d} 30 | [~ 100,100] 0
_ 2 _

ks F5 = 243 [100(xis — x7)° + (o — 1)?] 30| 3030 0
F6 F6 =3, ([x; + 0.5])? 30 | [-100,100] 0
F7 F7=3%%, ix} + rand[0,1) 30 | [~ 1.28,1.28] 0
F8 F8 = Y4, (x; sin(y/Txil)) 30 | [ 500,500] “418.9829%d
F9 F9 =3%% [x? — 10 cos 2 mx; + 10n] 30 | [-5.12,5.12) 0
F10 30 — 32,32 0

F10 = —20exp <—0.2 /% ?zlxl?) —exp (%2’1:1 cosani) +20+ [ ]

exp(1)
F11 -1 _yd ,2_7d Xi 30 — 600,600 0

F11 = =i X; i=1cos 2+ 1 [ ]
F12 F12 = 5[10 sin(y;)] + X1 (v, — 1?1 + 10sin?(y;44) + 30 [~ 50,50] 0

T u(x;,10,1004)]
F13 F13 = 0.1(sin?(3mxy) + X 1 (x; — 1)?[1 + sin?(3mx, + 30 [~ 50,50] 0

D]+ (xg — D? + sin?(2mxy)) + ik ulx;, 5,100,4)

F14 1 25 1 -1 2 [= 50,50] 0.998
F14 = 500 + Zj=1 ]'—+E?=1(Xi—aij)s]
Fi5 o (P o)) R 0.0003075
F15 = 2% [ai - bi2+bix3+x4] 65.536,65.536]
F16 F16 = 4x? — 2.1x} + %xf + xy%, — 4x2 + 4x; 2 [-5.5] -1.0316
F17 5.1 5 2 1 2 | [5 10] 0.398
F17 = (xz —Fxf +-xy - 6) + 10(1 _E) cosx; + 10
F18 F18 = [1+ (x; + x5 + 1)2(19 — 14x; + 3x2 — 14x, + 6x,x, + 2 [-2,2] 3
3x2)] = [30 + (2x; — 3x,)? * (18 — 32x; + 12x? + 48x, —
36x,x, + 27x2)]
2 B
F19 F19 = — Z?=1 c; exp (_ Zl‘3=1 aij(xj _ pl]) ) 3 [0,1] 3.86
2 B
F20 F20 = — Z?-Zl c; exp (_ Zi6=1 aij(xj _ pij) ) 6 [O,l] 3.32
1 _
F21 F21 = —21-521[()( —a)X - ai)T +¢] 4 [0,10] 10.1532
1
F22 F22 = 3K — a)(X — ap" + ¢ 4| [o10] -10.4028
_1 -
F23 F23 = _21121[()( _ a,:)(X _ ai)T + Ci] 4 [0,10] 10.5363
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Table 2 Design parameters

Parameter Algorithms
CWOA-IW WOA GWO PSO

Number of iterations 500 500 500 500
Number of runs 30 30 30 30
Number of search agents 30 30 30 30
a 2to0 2to0 2t00 NA
p 2.59 NA NA NA
Winax 0.9 NA NA NA
Woin 0.4 NA NA NA

The comparative analysis parameters used were the Optimal Value, the Average Optimal Value, the Standard
Deviation and the Mean Absolute Error.

6.2 Description of Power System Test Beds and System Data

The developed optimization tool is examined using three standard test systems to evaluate its effectiveness.
The number of iterations was set to 500 and the number of search agents set to 30. Algorithm performance
is assessed in terms of solution quality and convergence speed, and the results are compared with existing
optimization methods to demonstrate its capability of obtaining higher profit values. The three test systems
comprise a 3-unit 10-bus system (Ravichandran & Subramanian, 2020), the IEEE-39 bus system with 10
generating units(Dhaliwal & Dhillon, 2021), and the IEEE-118 bus system with 54 generating units (Illinois
Institute of Technology, 2015) representing small, medium and large-scale test systems respectively. Detailed
descriptions of the test system data are provided Tables 3, 4 and 5.

Table 3 Description of 3 Generator test system

Gen Prin Prax a(constant) b (linear) c(quadratic) Startup ramp up/down min

No. MW)  (MW) ($/h) ($/MWH) ($/MW2h) cost ($) MW /h) up/down
time(h)

Gl 100 600 500 10 0.002 450 100 3

G2 100 400 300 8 0.0025 400 100 3

G3 50 200 100 6 0.005 300 50 3

Table 4 Description of 10 Generator test system

Gen  Pmin Prax a(constant) b(linear) c(quadratic) Startup ramp up/down min
No. ™MwW)  (MW) ($/h) ($/MWh) ($/MW2h) cost ($) (MW /h) up/down
time(h)

Gl 150 455 1000 16.19 0.00048 4500 113.75 8
G2 150 455 970 17.26 0.00031 5000 113.75 8
G3 20 130 700 16.6 0.002 550 325 5
G4 20 130 680 16.5 0.00211 560 325 5
G5 25 162 450 19.7 0.00398 900 40.5 6
G6 20 80 370 22.26 0.00712 170 20 3
G7 25 85 480 27.74 0.00079 260 21.25 3
G8 10 55 660 25.92 0.00413 30 13.75 1
G9 10 55 665 27.27 0.00222 30 13.75 1
G10 10 55 670 27.79 0.00173 30 13.75 1
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Table 5 Description of 54 Generator test system

Gen  Puin Prax a(constant) b(lineat) c(quadratic) Startup ramp up/down min
No. MW)  (MW) ($/h) ($/MWh) ($/MW2h) cost (§) (MW /h) up/down
time(h)
Gl 5 30 31.67 26.2438 0.069663 40 15 1
G2 5 30 31.67 26.2438 0.069663 40 15 1
G3 5 30 31.67 26.2438 0.069663 40 15 1
G4 150 300 6.78 12.8875 0.010875 440 150 8
G5 100 300 6.78 12.8875 0.010875 110 150 8
G6 10 30 31.67 26.2438 0.069663 40 15 1
G7 25 100 10.15 17.82 0.0128 50 50 5
G8 5 30 31.67 26.2438 0.069663 40 15 1
G9 5 30 31.67 26.2438 0.069663 40 15 1
G10 100 300 6.78 12.8875 0.010875 100 150 8
Gl11 100 350 32.96 10.76 0.003 100 175 8
G128 30 31.67 26.2438 0.069663 40 15 1
G13 8 30 31.67 26.2438 0.069663 40 15 1
G14 25 100 10.15 17.82 0.0128 50 50 5
G15 8 30 31.67 26.2438 0.069663 40 15 1
Gl6 25 100 10.15 17.82 0.0128 50 50 5
G17 8 30 31.67 26.2438 0.069663 40 15 1
G18 8 30 31.67 26.2438 0.069663 40 15 1
G19 25 100 10.15 17.82 0.0128 59 50 5
G20 50 250 28 12.3299 0.002401 100 125 8
G21 50 250 28 12.3299 0.002401 100 125 8
G22 25 100 10.15 17.82 0.0128 50 50 5
G23 25 100 10.15 17.82 0.0128 50 50 5
G24 50 200 39 13.29 0.0044 100 100 8
G25 50 200 39 13.29 0.0044 100 100 8
G26 25 100 10.15 17.82 0.0128 50 50 5
G27 100 420 64.16 8.3391 0.01059 250 210 10
G28 100 420 64.16 8.3391 0.01059 250 210 10
G29 80 300 6.78 12.8875 0.010875 100 150 8
G30 30 80 74.33 15.4708 0.045923 45 40 4
G31 10 30 31.67 26.2438 0.069663 40 15 1
G32 5 30 31.67 26.2438 0.069663 40 15 1
G33 5 20 17.95 37.6968 0.028302 30 10 1
G34 25 100 10.15 17.82 0.0128 50 50 5
G35 25 100 10.15 17.82 0.0128 50 50 5
G306 150 300 6.78 12.8875 0.010875 440 150 8
G37 25 100 10.15 17.82 0.0128 50 50 5
G38 10 30 31.67 26.2438 0.069663 40 15 1
G39 100 300 32.96 10.76 0.003 440 150 8
G40 50 200 6.78 12.8875 0.010875 400 100 8
G41 8 20 17.95 37.6968 0.028302 30 10 1
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G42 20 50 58.81 229423 0.009774 45 25 1
G43 100 300 6.78 12.8875 0.010875 100 150 8
G44 100 300 6.78 12.8875 0.010875 100 150 8
G45 100 300 6.78 12.8875 0.010875 110 150 8
G46 8 20 17.95 37.6968 0.028302 30 10 1
G47 25 100 10.15 17.82 0.0128 50 50 5
G48 25 100 10.15 17.82 0.0128 50 50 5
G49 8 20 17.95 37.6968 0.028302 30 10 1
G50 25 50 58.81 22.9423 0.009774 45 25 2
G51 25 100 10.15 17.82 0.0128 50 50 5
G52 25 100 10.15 17.82 0.0128 50 50 5
G53 25 100 10.15 17.82 0.0128 50 50 5
G54 25 50 58.81 22.9423 0.009774 45 25 2

7. Results and Discussion
7.1 Optimal Value, Mean Optimal Value, Standard Deviation and Mean Absolute Error

Table 6 presents the optimal values, mean optimal values, standard deviations (SD), and mean absolute errors
(MAE) obtained by WOA, PSO, GWO, and the proposed CWOA-IW across the 23 classical benchmark
functions. The results demonstrate that CWOA-IW achieves superior performance in most test cases.
Specifically, CWOA-IW attained the best optimal values in 5 out of 8 unimodal functions and 4 out of 6
multimodal functions, outperforming WOA, PSO, and GWO. Furthermore, CWOA-IW successfully
reached the known global optimum for all fixed-dimension multimodal functions.

In terms of average optimal performance, CWOA-IW produced the best mean optimal values in 16 out of
the 23 benchmark functions, whereas GWO and PSO achieved this in only 2 functions each, and WOA in
none. All algorithms recorded identical mean optimal values for 3 functions. These results highlight the
proposed algorithm’s ability to consistently produce high-quality solutions.

Regarding robustness and precision, CWOA-IW achieved the lowest standard deviation in 16 of the 23
benchmark functions, compared to 0 for WOA, 1 for GWO, and 6 for PSO. Similarly, CWOA-IW obtained
the lowest MAE in 15 of the 23 functions, outperforming WOA (0), GWO (3), and PSO (4). Notably,
CWOA-IW and GWO observed identical MAE values for function F19. These findings confirm that
CWOA-IW offers superior consistency and accuracy in locating near-optimal solutions. Overall, CWOA-
IW demonstrated the most effective and reliable performance among all the compared algorithms.

7.2 Convergence Behaviour

The figures below show the convergence curves of the four algorithms for selected benchmark functions.
It can be seen in functions F1, F3, F4, F9 and F11 that the curve of CWOA-IW rapidly decreases as the
number of iterations increase and obtains the best optimal values. This is indicative of the excellent
exploitation ability of CWOA-IW, its ability to avoid local minima and its higher optimization accuracy.
Convergence towards the optimum in the final iterations can be seen in F7 and F10. This shows that the
algorithm kept searching the search space for good solutions. It can also be seen in functions F8, F17 and
F21 that CWOA-IW obtains the optimal value in the shortest time as compared to the other algorithms.
Overall, CWOA-IW exhibits a superior convergence behaviour with faster convergence, higher accuracy and
stronger global search capability as compared to WOA, GWO and PSO.

Table 6 Comparison of optimization results obtained for the benchmark functions
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Function CWOA-IW WOA GWO PSO

Vi Optimum Value 1.1103E-260 1.4821E-87 7.4222E-255 3.8144E-14
Mean 2.3131E-244 1.3264E-73 4076.7702 1.9490E-06
Standard Deviation 0 6.7732E-73 2940.3352 7.6881E-06
Mean Absolute Error 2.3131E-244 1.3264E-73 4076.7702 1.9490E-06

2 Optimum Value 4.0295E-137 4.9554E-58 6.0120E-137 0.0013
Mean 3.2034E-130 3.5276E-51 5.9607E-128 0.0579
Standard Deviation 8.3185E-130 1.0923E-50 3.0894E-127 0.0894
Mean Absolute Error 3.2034E-130 3.5276E-51 5.9607E-128 0.0579

B Optimum Value 2.4693E-188 16061.8282 2.7373E-187 13.4267
Mean 7.7711E-184 425359013 2.4956E-06 89.4264
Standard Deviation 0 16924.7007 1.0284E-05 63.1512
Mean Absolute Error 7.7711E-184 425359013 2.4956E-06 89.4264

A Optimum Value 1.2175E-114 0.0837 3.9994E-100 0.8938
Mean 6.1775E-99 51.9006 5.0620E-07 2.1200
Standard Deviation 3.3831E-98 26.5786 6.3060E-07 0.8789
Mean Absolute Error 6.1775E-99 51.9006 5.0620E-07 2.1200

¥il Optimum Value 27.2469 27.2295 25.9896 1.9859
Mean 27.8744 28.1624 27.1213 61.3549
Standard Deviation 0.3051 0.4397 0.8578 90.8315
Mean Absolute Error 27.8744 28.1624 27.1213 61.3549

¥ Optimum Value 0.0753 0.0687 0.1011 1.5898E-11
Mean 0.2650 0.3695 0.7402 2.7299E-06
Standard Deviation 0.1155 0.2163 0.4037 1.0057E-05
Mean Absolute Error 0.2650 0.3695 0.7402 2.7299E-06

N4 Optimum Value 8.3101E-07 3.4604E-05 0.0003 0.0126
Mean 9.8937E-05 2.7459E-03 0.0016 0.0278
Standard Deviation 8.3604E-05 3.4929E-03 0.0008 0.0122
Mean Absolute Error 9.8937E-05 2.7459E-03 0.0016 0.0278

B Optimum Value -12569.4798 -12568.9808 -12566.5036 -8206.8712
Mean -12281.2736 -10386.1810 -6398.9191 -6581.7763
Standard Deviation 782.7635 2017.0787 1406.9593 701.8604
Mean Absolute Error 288.2264 2183.3190 6170.5809 5987.7237

P Optimum Value 0 0 0 20.8941
Mean 0 5.6843E-15 2.2012 50.3780
Standard Deviation 0 2.2884E-14 2.7835 14.6799
Mean Absolute Error 0 5.6843E-15 2.2012 50.3780

110 Optimum Value 4.4409E-16 4.4409E-16 8.8818E-16 7.3692E-08
Mean 1.8652E-15 3.6415E-15 9.8987E-14 1.5253
Standard Deviation 1.7702E-15 2.3511E-15 2.5440E-14 0.6926
Mean Absolute Error 1.8652E-15 3.6415E-15 9.8987E-14 1.5253

f11 Optimum Value 0 0 0 1.7620E-11
Mean 0 3.7007E-18 0.0063 0.0311
Standard Deviation 0 2.0270E-17 0.0129 0.0304
Mean Absolute Error 0 3.7007E-18 0.0063 0.0311

f12 Optimum Value 0.0022 0.0045 0.0059 8.9545E-14
Mean 0.0090 0.0214 0.0427 0.1037
Standard Deviation 0.0034 0.0170 0.0223 0.1722
Mean Absolute Error 0.0090 0.0214 0.0427 0.1037

113 Optimum Value 0.0345 0.1145 0.0991 3.0888E-14
Mean 0.1948 0.4672 0.6607 0.0809
Standard Deviation 0.0910 0.2254 0.2762 0.2322
Mean Absolute Error 0.1948 0.4672 0.6607 0.0809
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f14

115

116

7

718

119

20

P21

22

723

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

Optimum Value
Mean

Standard Deviation
Mean Absolute Error

0.9980
0.9980
1.1959E-10
0.0020

0.0003
0.0003
2.9265E-05
4.0789E-05

-1.0316
-1.0316
0.0001
8.2980E-05

0.3979
0.3979
1.9292E-06
1.3466E-06

3.0000
3.0000
0.0001
0.0001

-3.8628
-3.8622
0.0009
0.0023

-3.3220
-3.3212
0.0007
0.0014

-10.1529
-9.7991
1.2898
0.3541

-10.4028
-10.2061
0.9676
0.1967

-10.5362
-10.5248
0.0147
0.0115

0.9980
2.9615
3.2333
1.9635

0.0003
0.0006
0.0003
0.0003

-1.0316
-1.0316
5.8702E-09
2.8452E-05

0.3979
0.3979
7.9698E-05
2.2612E-05

3.0000
3.0000
0.0002
5.3346E-05

-3.8628
-3.8574
0.0078
0.0043

-3.3220
-3.2004
0.1322
0.1198

-10.1514
-8.3017
2.5601
1.8515

-10.4020
-7.8140
3.0296
2.5888

-10.5339
-6.4305
3.2069
4.1058

0.9980
4.1999
3.9479
3.2011

0.0003
0.0025
0.0061
0.0022

-1.0316
-1.0316
1.0395E-05
2.8437E-05

0.3979
0.3979
1.4228E-06
1.2356E-06

3.0000
3.0000
3.3917E-05
2.8450E-05

-3.8628
-3.8610
0.0024
0.0023

-3.3220
-3.2516
0.0757
0.0704

-10.1528
-9.2238
2.1476
0.9294

-10.4027
-10.2253
0.9630
0.1775

-10.5363
-9.9935
2.0582
0.5428

0.9980
3.1648
2.7497
2.1660

0.0003
0.0043
0.0116
0.0040

-1.0316
-1.0316
6.6486E-16
2.8453E-05

0.3979
0.3979

0
9.3465E-11

3.0000
3.0000
2.0384E-15
7.7138E-14

-3.8628
-3.8628
2.7101E-15
0.0028

-3.3220
-3.2903
0.0535
0.0326

-10.1532
-5.8990
3.6041
4.2542

-10.4029
-7.5190
3.6209
2.8839

-10.53064
-6.8461
3.7918
3.6903
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7.3 Wilcoxon Signed-Rank Test

The statistical significance of the proposed CWOA-IW, GWO, PSO and WOA was evaluated using the
Wilcoxon signed-rank test at a 5% significance level. Table X shows that CWOA-IW exhibits a significant
improvement over the standard WOA, with a p-value of 0.000281. CWOA-IW also shows a marginal
improvement in performance over PSO, with a p-value of 0.0447. No statistically significant difference is
observed when compared with GWO, suggesting comparable performance on this benchmark suite. The
win-lose/tie counts further support these findings, with CWOA-IW achieving higher wins against all other
algorithms. These results show that CWOA-IW provides consistent and superior performance over the
benchmark suit compared to the other algorithms.

Table 7 Wilcoxon Signed Test Results for Algorithms

Algorithm p-values n/w/1/t
CWOA-IW vs WOA 0.000281 23/19/2/2
CWOA-IW vs PSO 0.0447 23/13/10/0
CWOA-IW vs GWO 0.3382 23/14/8/1

7.4 Power Generation

The power demand and market pricing data for the 3 standard test systems were obtained from(Dhaliwal &
Dhillon, 2021; Ravichandran & Subramanian, 2020). Tables 8, 9 and 10 show the optimal scheduled
generation for all units at each hour as obtained by CWOA-IW.

Table 8 Load profile & Market price data for 3 Generator test system

H(h) Power Demand (MW) Power Generation (MW) Prices ($/h)
1 170 170 10.55
2 250 250 10.35
3 400 400 9.00
4 520 520 9.45
5 700 700 10.00
6 1050 900 11.25
7 1100 1000 11.30
8 800 800 10.65
9 650 650 10.35
10 330 330 11.20
1 400 400 10.75
12 550 500 10.60
TOTAL 6920 6620
7.5 Profit

Table 11 presents the profits achieved by each algorithm across the test systems, demonstrating their
effectiveness in solving the complex problem of profit maximization for GENCOs under various
constraints. The percentages in brackets show the profit reduction relative to the profits achieved by the
CWOA-IW algorithm. Table 11 indicates that the proposed CWOA-IW algorithm achieved the highest
profits across all generator systems, clearly outperforming WOA, GWO, and PSO. The percentages in
brackets represent how much lower each competing algorithm’s profit was compared to CWOA-IW. For
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example, in the 3-generator system, WOA, GWO, and PSO achieved profits that were 69.9%, 176.6%, and
401.0% lower, respectively, showing a significant advantage for CWOA-IW. Although the performance gap
narrows in the 54-generator system (0.45% for WOA, 35.7% for GWO, and 3.6% for PSO), CWOA-IW
still produces the highest and most consistent profits. This demonstrates its robustness, scalability, and
superior convergence characteristics in solving the GENCO profit maximization problem. Figures 26-28
give a graphical representation of the values in Table 11.

The proposed CWOA-IW achieves superior results across the benchmark suite, showing a better balance

between exploration and exploitation, and a lower tendency for local optima entrapment. These

characteristics ate crucial for profit maximization for generating companies due to the non-convex search
space and highly constrained nature of the task. Consequently, the improved capabilities of the proposed
CWOA-IW demonstrated in the benchmark functions translate into higher profits when applied to
practical power system test beds, including the 3 unit 10-bus system, the IEEE-39 bus system and the

IEEE-118 bus system.

Table 9 Load profile & Market price data for 10 Generator test system

H(h) Power Demand (MW) Power Generation (MW) Prices ($/h)
1 700 700 22.15
2 750 750 22.00
3 850 830 23.10
4 900 766.2 22.65
5 1000 821.2 23.25
6 1100 640 2295
7 1150 697.9 22.50
8 1200 560.7 2215
9 1300 1086.8 22.80
10 1400 1331.4 29.35
1 1450 1275.6 30.15
12 1500 1460.4 31.65
13 1400 1283.1 24.60
14 1300 1138.1 24.50
15 1200 1200 22.50
16 1050 1050 22.30
17 1000 1000 22.25
18 1100 1100 22.05
19 1200 1200 22.20

20 1400 1346.1 22.65

21 1300 1293.1 23.10

22 1100 1100 2295

23 900 900 22.75

24 800 800 22.55
TOTAL 27050 24330.6
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Table 10 Load profile & Market price data for 54 Generator test system

H(h) Power Demand (MW) Power Generation (MW) Prices ($/h)
1 2800 2800 2215
2 3000 3000 22.00
3 3400 3400 23.10
4 3800 3800 22.65
5 4000 4000 23.25
6 4400 4400 22.95
7 4600 4600 22.50
8 4800 4800 22.15
9 5200 5200 22.80
10 5600 5600 29.35
1 5800 5800 30.15
12 6000 5600 31.65
13 5600 5200 24.60
14 5200 4800 24.50
15 4800 4200 22.50
16 4200 4000 22.30
17 4000 4400 2225
18 4400 4800 22.05
19 4800 5600 22.20

20 5600 5200 22.65

21 5200 4400 23.10

22 4400 3600 22.95

23 3600 3200 22.75

24 3200 5600 22.55
TOTAL 108400 108134

Table 11 Simulation Results for Profit Maximization Tool

ALGORITHM 3 GENERATOR SYSTEM 10 GENERATOR SYSTEM 54 GENERATOR SYSTEM
CWOA-TW $4,229.33 $9,325.62 $828,289.99

WOA $2,489.30 (69.9%) $6,728.73 (39%) $824,556.51 (0.45%)
GWO $1,529.12 (176.59%) $6,532.94 (43.16%) $610,464.10 (35.68%)
PSO $844.15 (401.02%) $3,867.71 (141.81%) $799,272.39 (3.63%)
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Figure 26 Profit Results for 3 Generator test system
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Figure 27 Profit Results for 10 Generator test system
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Figure 28 Profit Results for 54 Generator test system
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8. Conclusion

This study proposes an enhanced Whale Optimization Algorithm using Chaotic Mapping and Inertia Weight
(CWOA-IW) to address the limitations of standard WOA, namely premature convergence, poor population
diversity, and exploration-exploitation imbalance. CWOA-IW achieves a more diverse population
distribution through the integration of a cubic chaotic map during initialization, while the introduction of an
inertia weight enhances its convergence behaviour and search adaptability throughout the optimization
process.

Experimental results on classical benchmark functions demonstrate the superior performance of CWOA-
IW in terms of convergence behaviour and solution quality. Furthermore, when applied to the profit
maximization problem of GENCOs, the improved algorithm optimizes the generation scheduling under the
tested market and operational constraints. The improved algorithm achieved higher profits compared to
conventional metaheuristic algorithms such as WOA, GWO and PSO for three power system test beds. This
suggests CWOA-IW’s robustness and scalability for real-world electricity market operations. Overall,
CWOA-IW provides a promising and scalable optimization framework for solving complex engineering and
power system optimization problems.
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