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1. Introduction 

The transition from a regulated, vertically integrated structure to a deregulated market structure has created 
a profound change in the electric power system. The unbundling of the generation, transmission and 
distribution sectors has introduced market competition, allowing several generating companies (GENCOs) 
to participate in electricity generation and trading. The goal of these generating companies has now switched 
from minimizing costs of operating power plants, to maximizing profit by optimizing the scheduling and 
operation of power plants while adhering to operational and regulatory constraints (Abdi, 2021).  
Traditional optimization models such as Mixed Integer Linear Programming (Gilvaei et al., 2021), Lagrangian 

Relaxation (Sudhakar et al., 2017) and Dynamic Programming (Putz et al., 2021) have been utilized to tackle 

the profit maximization problem and although these approaches are quick and easy to implement, they suffer 

from solution-quality problems (Shukla et al., 2015). They are ineffective for large-scale and highly dynamic 

power systems, and the uncertainty and non-linearities of deregulated markets are not properly handled by 

these approaches. Therefore, interest in alternative optimization methods has increased, chief among them 
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being metaheuristic algorithms. 

Metaheuristic optimization algorithms are a class of optimization algorithms used to solve complex 

optimization challenges across multiple domains (Abdel-Basset et al., 2018). They play a crucial role in 

optimization due to their inherent adaptability and efficacy in addressing complex optimization problems 

where traditional or exact algorithms may fail due to their computational intensity, especially in high-

dimensional, nonlinear, or multi-modal search space (Benaissa et al., 2024) s. In optimization problems, the 

best possible solution is found using mathematical theorems, which is better as opposed to evaluating every 

possible solution (Tomar et al., 2023). Some of these metaheuristic algorithms include the Particle Swarm 

Optimization (PSO) (Kennedy et al., 1995) Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), African 

Vultures Optimization Algorithm (AVOA) (Abdollahzadeh et al., 2021), War Strategy Optimization (WSO) 

(Ayyarao et al., 2022) and Dung Beetle Optimizer (DBO) (Xue & Shen, 2023). 

Researchers have employed metaheuristic algorithms in addressing the profit maximization problem of 

generating companies. Ravichandran and Subramanian (2020) addressed the profit maximization problem 

in a deregulated market using the Elephant Herding Optimization (EHO) algorithm to achieve maximum 

profits while considering various constraints and tested the algorithm against a 3-unit and 10-unit system. 

The algorithm obtained higher profits as compared to other metaheuristic algorithms but suffers from local 

optima entrapment. Kumar et al. (2023) utilized the Monarch Butterfly Optimization (MBO) algorithm to 

tackle the profit maximization problem and tested the algorithm on 10-unit and 100-unit systems over a 24-

hour schedule. It showed improvements in profit as compared to two other algorithms, however, the 

algorithm had poor convergence capabilities. Dhaliwal and Dillon (2019) proposed a Memetic Binary 

Differential Evolution algorithm for profit maximization for generating companies in a deregulated energy 

system. The algorithm combined Binary Differential Evolution for global search with Binary Hill Climbing 

for local search. The algorithm showed significant improvement compared to other algorithms, however, 

had a long computational time and did not account for dynamic market price fluctuations.   

Durga and Gayathri (2024)  tackled the profit maximization problem using the Chaotic Sea-Horse Optimizer 

to maximize GENCO profits. The paper applied chaotic mapping techniques to the standard Sea-Horse 

Optimizer (SHO) to enhance its performance. Tested on IEEE-39 bus system, the algorithm realized higher 

profits compared to the Genetic Algorithm and the Muller Method. Sahoo and Hota (2019) proposed the 

Moth Flame Optimization algorithm for maximizing profit of generating companies while minimizing 

societal costs. The algorithm was tested on the IEEE-30 bus system and the algorithm obtained higher 

profits compared to the Particle Swarm Optimizer and the Genetic Algorithm. Senthilvadivu et al. (2018) 

proposed an Exchange Market Algorithm to address the profit maximization problem for GENCOs in a 

deregulated electricity market and was tested on the IEEE-39 bus system with 10 units. It was seen to achieve 

higher profits as well compared to SFLA and MPPD-ABC. However, in all 3 papers, the algorithms lacked 

scalability analysis for larger systems and gave the impression of overfitting as it was tested on only one 

power system. 

Ghadi et al. (2016) proposed an Imperialist Competitive Algorithm (ICA) with a cascaded ICA-PSO 

constraint-handling method to solve the profit maximization problem for GENCOs. The algorithm was 

tested on 10, 40 and 100-unit systems over 24 hours and outperformed the Particle Swarm Optimizer in 

terms of the profit obtained. Comparison of the algorithm’s performance however was done against only 

one other optimization algorithm and does not demonstrate how the approach performs relative to a broader 

set of established algorithms. Krishna and Sao (2016) presented an Improved Teaching-Learning-Based 

Optimization (I-TLBO) to solve the profit maximization problem in a deregulated environment. An adaptive 

teaching component, multiple teachers, tutorial-based learning and self-motivated learning were introduced 

to enhance the standard TLBO. Tested on the IEEE-39 bus system over 10 hours, I-TLBO achieved a profit 

of $91,120. The method however, lacked comparison with other algorithms, making it difficult to assess its 

relative effectiveness or contribution. 
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There is therefore the need to select an algorithm that demonstrates good convergence capabilities, strong 

exploratory capabilities and a fast execution time. The selected algorithm should be tested on systems of 

varying size amidst various limitations, and its results should be compared with well-established 

metaheuristic algorithms previously utilized for profit maximization problems to effectively evaluate its 

performance and validity. 

Numerous metaheuristic algorithms have emerged over time, encompassing human-inspired, physics-based, 

evolution-based and swarm intelligence-based algorithms. Majority of the algorithms are population-based, 

meaning they operate on a set of possible solutions that are iteratively refined to arrive at the optimal solution 

(Tomar et al., 2023). Despite their differing inspirations, population-based metaheuristic algorithms generally 

follow a similar framework consisting of two stages: exploration and exploitation (Lin & Gen, 2009). During 

exploration, the algorithm performs a global search of the solution space, where movements are highly 

randomized to ensure diversity. The most promising regions in the search space identified earlier are then 

investigated (Mirjalili & Lewis, 2016). Although these algorithms have many advantages, they still suffer from 

limitations such as slow convergence rates and a poor balance between exploration and exploitation leading 

to convergence to suboptimal solutions (Benaissa et al., 2024; Shehab et al., 2024). 

The whale optimization algorithm is a novel swarm intelligence-based metaheuristic algorithm that has been 

employed extensively to solve complex optimization problems because of its simplicity and ease of 

implementation. The algorithm mimics the hunting behaviour of humpback whales and mathematically 

models three key stunts which are encircling prey, bubble-net attacking method (exploitation phase), and 

search for prey (exploration phase)(Mirjalili & Lewis, 2016). The whale optimization algorithm has been seen 

to handle optimization problems in industry and engineering effectively (Gharehchopogh & Gholizadeh, 

2019), and has been utilized in many studies such as resource allocation in wireless networks (Pham et al., 

2020), clustering (Nasiri & Khiyabani, 2018)  and engineering design problems such as welded beam design 

(Zhou & Hao, 2025). The algorithm, however, has deficiencies consistent with metaheuristic algorithms. 

There is an imbalance in exploitation and exploration, and the algorithm suffers from premature convergence 

to suboptimal solutions and slow convergence rates (Wei et al., 2025). 

In light of this, many researchers have incorporated various strategies into the standard WOA to address 

these issues and improve its performance. Deepa and Venkataraman (2021) proposed an enhanced Whale 

Optimization Algorithm based on Levy Flight mechanism (Levy WOA). The integrated Levy flight 

mechanism improves the algorithm’s ability to break out of local optima and diversifies the population. 

However, this method introduces uncontrolled large jumps which may take the solution out of a search 

space in smaller search spaces. Di Cao et al. (2023) presented an Enhanced WOA (EWOA), that combines 

Improved Dynamic Opposite Learning (IDOL) with an adaptive encircling prey stage. Although improving 

exploration-exploitation balance, the improvement drastically increases the computational time and 

complexity of the algorithm. To address the issues of poor local search capability and local optima 

entrapment, Liu et al. (2023) suggested a Whale Optimization Algorithm with Combined mutation and 

Removing similarity (CRWOA). Despite the improved convergence speed and solution quality as compared 

to other algorithms, the population diversity still drops sharply during later iterations, which makes the 

algorithm prone to stagnation. Qu et al. (2024) proposed the Spiral-Enhanced Whale Optimization 

Algorithm, which incorporates a non-linear time-varying self-adaptive perturbation strategy and an 

Archimedean spiral structure. This improved solution accuracy of the algorithm but increased the complexity 

of the algorithm since the disturbance factor introduced needs complex tuning. Gao et al. (2021)  proposed 

the Skew Tent Nonlinear Whale Optimization Algorithm (STNWOA) to address problems of local optima 

trapping and slow convergence speed. The improved algorithm however was tested only on a few benchmark 

functions and its performance across diverse problem types is not confirmed. Therefore, there remains the 

need to improve the WOA to holistically address the problems of premature convergence, local optima 

entrapment and proper exploration-exploitation balance while maintaining simplicity and fast convergence 
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speeds. 

This study introduces an improved WOA, termed CWOA-IW, which incorporates chaotic mapping and 

inertia weight to address these deficiencies. The initial population is generated with a cubic chaotic map, 

enhancing diversity, and reducing the risk of premature convergence. Inertia weight is incorporated into the 

position-update mechanism to help the algorithm escape local optima and dynamically balance exploration 

and exploitation. The proposed CWOA-IW is then applied to the profit maximization problem for 

generating companies, taking into account the various limitations and complexities of power system 

operations. The remainder of this paper is structured as follows: The objective function for the profit 

maximization problem is formulated in Section 2. The conventional whale optimization algorithm is 

described in Section 3. The proposed CWOA-IW using chaotic mapping and inertia weight theories is 

presented in Section 4. The developed profit maximization tool is described in Section 5. Section 6 presents 

the benchmark functions and the power system test beds used to test the efficacy of the improved model 

and the optimization tool. The results of the improved CWOA-IW algorithm and the profit maximization 

tool with a comparative analysis against other optimization algorithms is shown in Section 7. Conclusions 

are drawn in Section 8. 

2. Problem Formulation 

With the transition from a traditionally regulated market to a deregulated one, the objective function of 

GENCOs shifts solely from minimizing cost to maximizing profits, while ensuring grid stability and 

reliability under operational and market constraints such as forecasted demand, fluctuating electricity prices 

and generation limits (Abdi, 2021; Shukla et al., 2015). The elements of the objective function and constraints 

associated with the problem are covered in this section. 

 

2.1 Objective function 

The GENCO’s profit is defined as the difference between the total revenue obtained from the sale of 

electricity at market price and its total operating costs, expressed in Equation (1). 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑃𝐹 =  𝑇𝑅 −  𝑇𝐶       (1) 

𝑃𝐹 is the profit of the GENCO, 𝑇𝐶 is the total operating cost of the GENCO and 𝑇𝑅 is the total revenue 

of the GENCO. The total operating cost (TC) of the GENCO is expressed as a function of the fuel cost of 

power generated by each unit at each time t, the start-up cost and the commitment status of each unit as 

expressed in Equation (2). 

 

𝑇𝐶 = ∑ ∑ [𝐹𝑖(𝑃𝑔𝑖
𝑡)𝑁

𝑖=1
𝑇
𝑡=1 + 𝑆𝑈𝐶𝑖,𝑡 ]. 𝑋𝑖

𝑡      (2) 

𝑇 is the scheduling time horizon, 𝑡 is the time index, 𝑁 is the total number of thermal generating units and 

𝑖 is the generating unit index. 𝐹𝑖 is the fuel cost function of unit 𝑖, 𝑃𝑔𝑖
𝑡 is the power output of unit 𝑖 at time 

𝑡, 𝑆𝑈𝐶𝑖,𝑡 is the start-up cost of unit 𝑖 at time 𝑡 and 𝑋𝑖
𝑡 is the commitment status of unit 𝑖 at time 𝑡. 

 

The total revenue (TR) obtained by a GENCO from selling power is expressed as a function of the power 

generated by each unit at each time t, the forecasted market price of electricity at that time, and each 

generating unit’s commitment status, and is given by Equation (3). 

 

𝑇𝑅 = ∑ ∑ (𝑃𝑔𝑖
𝑡. 𝐹𝑆𝑃𝑡). 𝑋𝑖

𝑡𝑁
𝑖=1

𝑇
𝑡=1       (3) 

where 𝐹𝑆𝑃𝑡 is the forecasted market price at time 𝑡. 
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2.2 Constraints  

Generating companies cannot increase profit infinitely and are met with limitations that influence how they 

operate. The constraints used in this study are: 

 

2.2.1 System demand constraint 

Throughout the whole scheduling period, GENCOs produce power such that the total power output of 

committed units is either equal to or less than the power demand at each time interval. The system demand 

constraint is mathematically modelled as Equation (4).  

 

∑ 𝑃𝑔𝑖
𝑡. 𝑋𝑖

𝑡𝑁
𝑖=1 ≤ 𝑃𝐷        (4) 

where PD is the load demand at time t. 

 

2.2.2 Unit generation limit constraint 

There are inherent limits on the maximum and minimum power that each generating unit can produce when 

committed. The generation bounds for committed units are defined as Equation (5). 

𝑃𝑔𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖

𝑡 ≤ 𝑃𝑔𝑖
𝑚𝑎𝑥        (5) 

𝑃𝑔𝑖
𝑚𝑖𝑛 is the minimum power generation limit of unit 𝑖 and 𝑃𝑔𝑖

𝑚𝑎𝑥 is the maximum power generation limit of 

unit 𝑖. 

2.2.3 Unit minimum up/down time 

Each generating unit must satisfy minimum-up time and minimum-down time constraints. Once a unit is 

committed, it must remain on for a set period (minimum up time), and once shut down, it must remain off 

for a set period (minimum down time). The minimum up/down time constraints are expressed in Equation 

(6). 

𝑇𝑖
𝑜𝑛 ≥  𝑇𝑖

𝑢𝑝
 ; 𝑇𝑖

𝑜𝑓𝑓
≥  𝑇𝑖

𝑑𝑜𝑤𝑛       (6) 

where 𝑇𝑖
𝑜𝑛and 𝑇𝑖

𝑜𝑓𝑓
 represent the on and off durations of unit 𝑖 respectively, and 𝑇𝑖

𝑢𝑝
 and 𝑇𝑖

𝑑𝑜𝑤𝑛 

represent the minimum up and down times of unit 𝑖 respectively. 

2.2.4 Unit ramp up/down rates 

The ramp rate of a generating unit refers to the maximum change in output power that operators can apply 

within a given time interval. These limits are defined by the ramp-up and ramp-down constraints, which are 

modelled as Equation (7). 

𝑃𝑔𝑖
𝑡 − 𝑃𝑔𝑖

𝑡−1 ≤  𝑈𝑅𝑖 ; 𝑃𝑔𝑖
𝑡−1 − 𝑃𝑔𝑖

𝑡 ≤ 𝐷𝑅𝑖     (7) 

𝑃𝑔𝑖
𝑡 is the power output of generating unit 𝑖 at time 𝑡, 𝑃𝑔𝑖

𝑡−1 is the power output of generating unit 𝑖 at 

the previous time period, 𝑈𝑅𝑖 is the ramp-up limit of unit 𝑖 and 𝐷𝑅𝑖 is the ramp-down limit of unit 𝑖. 

3. Whale Optimization Algorithm 

The Whale Optimization Algorithm is a well-known optimization technique inspired by nature that has 

applications in data science, engineering, medicine, and economics (Nasiri & Khiyabani, 2018; Pham et al., 

2020; Wei et al., 2025; Zhou & Hao, 2025). The algorithm was proposed in 2016 by Seyedali Mirjalili and 
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Andrew Lewis, and is inspired by the distinctive hunting behaviour of humpback whales, particularly their 

bubble-net feeding approach (Mirjalili & Lewis, 2016). This behaviour involves whales creating bubbles in a 

spiral pattern to encircle and trap prey. In WOA, a set of candidate solutions, referred to as whales, are 

initialized randomly within defined boundary conditions. The position of each whale is updated iteratively 

using analytic systems which mimic two key behaviours: search for prey (exploration) and encircling prey or 

bubble-net attacking (exploitation). The position update is guided by parameters such as a random coefficient 

vector (A), a random number (r) between 0 and 1, and a logarithmic spiral constant (b), as shown in the 

position update equations. During iterations, the algorithm evaluates the fitness of each whale against the 

given objective function, updating the best-known solution until an optimal solution is found or a stopping 

criterion, such as a maximum number of iterations, is met. The simplicity and effectiveness of WOA have 

led to its rapid adoption for solving complex optimization problems. 

 

3.1 Encircling Prey 

The initial phase of the whales' hunting strategy involves encircling their prey. WOA treats the current 

optimal whale, denoted as 𝑋⃗∗, as the target prey or as close to the optimum. All other whales adjust their 

positions based on 𝑋⃗∗ using Equation (8) and (9) (Mirjalili & Lewis, 2016) is  

 

𝑋⃗(𝑡 + 1) = 𝑋⃗∗(𝑡) − 𝐴 · 𝐷⃗⃗⃗       (8) 

𝐷⃗⃗⃗ = |𝐶 · 𝑋⃗∗(𝑡) − 𝑋⃗(𝑡)|        (9) 

 

𝐴 and 𝐶 represent coefficient vectors and 𝑡 is the current iteration. In each iteration, 𝑋⃗ is updated if a 

better solution is found. 

The vectors 𝐴 and 𝐶 are calculated with Equation (10) and (11) respectively. 

 

𝐴 = 2𝑎⃗ · 𝑟 − 𝑎⃗          (8) 

𝐶 = 2 · 𝑟         (9) 

 

𝑟 is a random vector in [0,1] and 𝑎⃗ is linearly reduced from 2 to 0 across iterations (in both exploration and 

exploitation phases). 

 

3.2  Bubble-net Attacking Strategy 

The bubble-net attacking strategy of humpback whales is modelled as the exploitation phase (Kaveh & 

Ghazaan, 2017). During this stage, whales encircle their prey by exhaling bubbles in a circular pattern, 

gradually narrowing the bubble ring to trap the prey in a confined area. The whale then ascends in a spiral 

trajectory to capture the prey. This behaviour is mathematically represented using two key mechanisms: the 

Shrinking Encircling mechanism and the Spiral Updating Position. The shrinking encircling mechanism is 

implemented by reducing the value of the control parameter 𝑎⃗, which limits the movement range and 

simulates the tightening of the search space. The spiral update position uses a spiral equation to mimic the 

whale’s helical movement toward the prey. Together, these mechanisms guide individual whales toward the 

best-known position, enhancing local search capability and refining solution accuracy.  Update of the whale 

at this stage is done using Equation (12). 

 

𝑋⃗(𝑡 + 1) = 𝐷′⃗⃗⃗⃗⃗ · 𝑒𝑏𝑙 · 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋⃗∗(𝑡)      (10) 

The whales simultaneously swim in a spiral pattern and in a shrinking circle around the prey. To model this 
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behaviour, a probability of 50% is assumed for choosing between either movement in updating the position 

of whales. The mathematical model for updating positions by the whales at this stage is given in Equation 

(13). 

𝑋⃗(𝑡 + 1) =  {
𝑋⃗∗(𝑡) − 𝐴 · 𝐷⃗⃗⃗                              𝑖𝑓 𝑝 < 0.5

𝐷′⃗⃗⃗⃗⃗ · 𝑒𝑏𝑙 · 𝑐𝑜𝑠(2𝜋𝑙) + 𝑋⃗∗(𝑡)    𝑖𝑓 𝑝 ≥ 0.5
    (11) 

3.3 Search for prey 

At this point, when |𝐴| > 1, the current whale randomly selects an individual whale from the present 

population to update its position to conduct a global search, thereby preventing the population from 

converging early on a locally optimum solution. Its mathematical model is similar to Equation (8) and (9), 

except that the optimal individual is replaced by a randomly chosen one. 

𝑋⃗(𝑡 + 1) = 𝑋⃗𝑟𝑎𝑛𝑑(𝑡) − 𝐴 · 𝐷⃗⃗⃗       (14) 

𝐷⃗⃗⃗ = |𝐶 · 𝑋⃗𝑟𝑎𝑛𝑑(𝑡) − 𝑋⃗(𝑡)|       (15) 

𝐴 and 𝐶 are coefficient vectors, 𝑡 indicates the current iteration,  𝑋⃗𝑟𝑎𝑛𝑑 is the position vector of the randomly 

selected whale and 𝑋⃗ is the position vector of the current whale. 

4. Proposed Chaotic Whale Optimization Algorithm with Inertia Weight 

Similar to other metaheuristic algorithms, WOA exhibits limitations that reduce its accuracy and 

effectiveness in tackling specific optimization tasks. Previous studies and critical reviews (Gharehchopogh 

& Gholizadeh, 2019; Mohammed et al., 2019; Nadimi-shahraki et al., 2022) show that WOA has inefficient 

search mechanisms (Nadimi-Shahraki et al., 2022), often resulting in premature convergence (Liu et al., 

2023), poor exploration-exploitation balance (Cao et al., 2023), stagnation away from optimal regions (Sun 

et al., 2019) and low population diversity (Gao et al., 2021). These performance deficiencies can often be 

attributed to the algorithm’s controlling parameters and stages, particularly the initialization process and the 

mechanisms that govern exploration and exploitation. 

The initialization stage in WOA, which typically relies on uniform random population generation, lacks 

strategic distribution and diversity enhancement mechanisms. As a result, the algorithm may begin with a 

poorly distributed population, which affects its ability to effectively explore the search space and contributes 

to low population diversity and early stagnation. Furthermore, the control parameters, particularly the linearly 

decreasing coefficient a, the random vector r, and the spiral shape parameter b, play a pivotal role in steering 

the search behaviour. The linear adaptation of a, intended to shift the algorithm gradually from exploration 

to exploitation, often fails to respond dynamically to the problem landscape, thereby leading to poor search 

strategies and unbalanced transitions between global and local search phases.  

When the value of a reduces too quickly, exploration is prematurely abandoned, increasing the risk of 

premature convergence; if a remains large for too long, the algorithm may stagnate far from optimal regions 

due to insufficient exploitation. These shortcomings, coupled with static parameter control and simplistic 

agent movement strategies, limit WOA’s performance in complex or high-dimensional optimization 

problems. As evidenced in various studies, refining the initialization phase and adopting adaptive control 

parameter schemes are essential for mitigating these issues and enhancing the overall robustness and 

accuracy of the algorithm. 

Another critical factor shaping WOA’s performance is its dependence on the current best whale during the 

position update of the entire population. During exploitation, the movements of all whales are primarily 

directed by the best solution identified thus far. While this leader-driven strategy facilitates rapid convergence 

toward potentially optimal regions of the search space, it simultaneously increases the risk of premature 
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convergence—particularly when the current best solution resides within a suboptimal region in the search 

space (Gharehchopogh & Gholizadeh, 2019). 

To address these shortcomings of the standard WOA relating to population diversity, premature 

convergence, local optima entrapment and poor exploration-exploitation balance, two theories are applied: 

Chaotic mapping and Inertia weight. 

Pseudocode of the WOA algorithm. 

Initialize the whale’s population Xi (i = 1, 2, …, n) 
Calculate the fitness of each search agent 
X*=the best search agent  
while (t < maximum number of iterations) 
      for each search agent 
      Update a, A, C, l, and p 

if (p<0.5) 
      if (|A|< 1) 

Update the position of the current search agent by the Eq. (8) 
        else if (|A≥1|)  

Select a random search agent (𝑿⃗⃗⃗𝒓𝒂𝒏𝒅) 
             Update the position of the current search agent by the Eq. (14) 

      end if 
else if (p≥0.5) 

Update the position of the current search by the Eq. (12) 
end if 

  end for 
Check if any search agent goes beyond the search space and amend it 
Calculate the fitness of each search agent 
Update X* if there is a better solution 
t=t+1 

end while 
return X*  

 

4.1 Chaotic mapping 

The initial population’s quality and diversity greatly affect the performance of metaheuristic algorithms. The 

standard WOA relies on random distributions, which may not sufficiently explore the solution space. To 

address this, chaotic mapping techniques are incorporated into the initialization phase of the algorithm. Due 

to its deterministic and ergodic properties, the chaotic map yields a more diverse initial population in the 

search space (Gao et al., 2021). 

In this study, the cubic chaotic map is utilized to produce the initial population. The chaotic sequence is 

modelled in Equation (16).  

 

𝑋𝑖 =  𝜌𝑋𝑖−1(1 − 𝑋𝑖−1
2), 𝑋𝑖 ∈ (0,1)       (12) 

The chaotic parameter 𝝆 quantifies how well the chaotic map distributes points over time. It governs the 

sequence’s chaotic and ergodic behaviour. If 𝝆 is too large, the sequence may diverge or become overly 

chaotic and unstable. Conversely, if 𝝆 is too small, the sequence may exhibit reduced ergodicity and tend 

toward periodic behaviour. After conducting sensitivity analysis, the value of 𝝆 is set to 2.59 for optimal 

ergodic characteristics 

The chaotic number 𝑋𝑖, is mapped to the ith initial individual whale in the search space to generate initial 

populations. 
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4.2 Inertia weight 

To further tune and balance the exploration and exploitation ability, an inertia weight factor is introduced in 

WOA to scale the influence of the current best whale on generating the positions of individual whales in the 

exploitation phase.  The inertia weight coefficient is defined in Equation (17).  

 

𝑤 =  𝑤𝑚𝑎𝑥 −  
(𝑤𝑚𝑎𝑥− 𝑤𝑚𝑖𝑛) ∙ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑚𝑎𝑥 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
     (13) 

 

The parameters 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛, representing the maximum and minimum values of the inertia weight 

respectively, are set to 0.9 and 0.4 after sensitivity analysis. The formula shows that during the early stages 

of optimization, the weight coefficient is large, allowing for larger search steps and preventing local optima 

trapping. As the optimization progresses, the weight coefficient decreases, enabling a more refined local 

search that enhances both the accuracy and convergence speed. The new position update equations are 

modelled in Equation (18) and (19). The update is done depending on the value of parameter p. When p is 

greater or equal to 0.5, the whales update their position using Equation (19). However, when p is less than 

0.5, the whales update their position using Equation (18).  

 

𝑋⃗(𝑡 + 1) = 𝑤 · 𝑋⃗∗(𝑡) − 𝐴 · 𝐷⃗⃗⃗        (14) 

𝑋⃗(𝑡 + 1) = 𝐷′⃗⃗⃗⃗⃗ · 𝑒𝑏𝑙 · 𝑐𝑜𝑠(2𝜋𝑙) + 𝑤 · 𝑋⃗∗(𝑡)     (15) 

𝑋⃗(𝑡 + 1) =  {
𝑤 · 𝑋⃗∗(𝑡) − 𝐴 · 𝐷⃗⃗⃗                              𝑖𝑓 𝑝 < 0.5

𝐷′⃗⃗⃗⃗⃗ · 𝑒𝑏𝑙 · 𝑐𝑜𝑠(2𝜋𝑙) + 𝑤 · 𝑋⃗∗(𝑡)    𝑖𝑓 𝑝 ≥ 0.5
    (16) 

 

The flowchart of CWOA-IW incorporating the cubic chaotic map and inertia weight is shown in Figure 1.  

5. Profit Maximization Tool  

Using the improved CWOA-IW algorithm, the proposed optimization tool for solving the profit 

maximization problem follows a structured procedure to maximize GENCO profits while adhering to 

system and operational constraints. The process begins with the input of test system data, which includes 

each generating unit’s generation limits, fuel cost coefficients, start-up costs, ramping rates, and minimum 

up and down times. In addition, the power demand and market pricing data over the scheduling horizon are 

provided as inputs to the tool.  

Following this, the population initialization phase is carried out. Here, an initial set of candidate solutions 

(representing the power dispatch schedules of the generating units within their defined limits) is generated 

using the cubic chaotic map technique. This ensures a diverse starting population for the algorithm. Each 

possible solution is then assessed in the objective function evaluation stage, where the profit of the generating 

units is computed. The solution that yields the highest profit, along with its associated power dispatch 

schedule, is recorded as the current best.  

Subsequently, the parameter updating stage is performed. In this step, the CWOA-IW parameters (a, A, C, 

l, p and w) are updated according to their respective governing equations. These updated parameters guide 

the position updating process, during which the solutions are adjusted either with reference to the current 

best solution or in relation to randomly selected solutions, thereby balancing exploration and exploitation.  

To ensure feasibility, constraint handling techniques are applied to the updated solutions. If any constraints 

such as generation limits, ramp rates, or minimum up/down times are violated, penalties are imposed on the 

profit values. This adjustment directs the search towards solutions that satisfy all system requirements. Once 

adjustments are made, the objective function is re-evaluated, allowing the algorithm to determine the profit 
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associated with the updated solutions.  

This iterative cycle of parameter updating, position updating, constraint handling, and re-evaluation 

continues until the termination criterion is met, typically determined by a maximum iteration number. At the 

end of the process, the tool returns the optimal power dispatch schedule for the generating units along with 

the maximum profit achievable under the given market and operational conditions. The flowchart illustrating 

the developed profit maximization tool using CWOA-IW is shown in Figure 2. 

 

 
Figure 1 Flowchart of proposed CWOA-IW 
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Figure 2 Flowchart describing profit maximization process 

 

6. Testing of the Improved Algorithm and Optimization Tool 

6.1 Benchmark Functions 

The CWOA-IW algorithm’s efficacy was assessed using 23 classical benchmark functions obtained from 

(Mirjalili & Lewis, 2016). These functions fall into three categories: unimodal, multimodal and fixed 

dimension multimodal functions. Functions F1-F7 are unimodal since they have only one global optimum 

and are often used to assess the exploration capabilities of the algorithm. Functions F8-F13 are multimodal 

functions and functions F14 - F23 are fixed dimension multimodal functions, both with numerous local 

optima whose number increases exponentially with the dimensions. A detailed description of all 23 

benchmark functions is presented in  Table 1. 

The enhanced Chaotic Whale Optimization Algorithm with Inertia Weight (CWOA-IW) is compared with 

the base WOA, the Grey Wolf Optimizer (GWO) and the Particle Swarm Optimizer (PSO). All simulations 

were carried out in MATLAB R2022a on a computer with these specifications: Lenovo 20L8A01RUK Intel 

(R) Core (TM) i5-8250U CPU @ 1.60GHz and 8GB RAM. Sensitivity analysis was performed to obtain 

optimum parameter tuning in testing the algorithms. The specific parameters of the proposed CWOA-IW 

and compared algorithms are shown in Table 2. 
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Table 1 Description of benchmark functions 

Function Description Dim Range fmin 

F1 𝐹1 = ∑ 𝑥𝑖
2𝑑

𝑖=1   30 [− 100,100] 0 

F2 𝐹2 = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|𝑑
𝑖=1

𝑑
𝑖=1   30 [− 10,10] 0 

F3 𝐹3 = ∑ (∑ 𝑥𝑗
𝑖
𝑗=1 )𝑑

𝑖=1

2
  30 [− 100,100] 0 

F4 𝐹4 = max{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑑}  30 [− 100,100] 0 

F5 𝐹5 = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]𝑑−1

𝑖=1   30 [− 30,30] 0 

F6 𝐹6 = ∑ ([𝑥𝑖 + 0.5])2𝑑
𝑖=1   30 [− 100,100] 0 

F7 𝐹7 = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑[0,1)𝑑

𝑖=1   30 [− 1.28,1.28] 0 

F8 𝐹8 = ∑ (𝑥𝑖 𝑠𝑖𝑛(√|𝑥𝑖|))𝑑
𝑖=1   30 [− 500,500] -418.9829*d 

 

F9 𝐹9 = ∑ [𝑥𝑖
2 − 10 𝑐𝑜𝑠 2 𝜋𝑥𝑖 + 10𝑛]𝑑

𝑖=1   30 [− 5.12,5.12] 0 

F10 
𝐹10 = −20 exp (−0.2√

1

𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1 ) − exp (

1

𝑑
∑ 𝑐𝑜𝑠 2 𝜋𝑥𝑖

𝑑
𝑖=1 ) + 20 +

exp(1)  

30 [− 32,32] 0 

F11 𝐹11 =
1

4000
− ∑ 𝑥𝑖

2𝑑
𝑖=1 − ∏ cos

𝑥𝑖

√𝑖
+ 1𝑑

𝑖=1   30 [− 600,600] 0 

F12 𝐹12 =  
𝜋

𝑑
[10 sin(𝜋𝑦1)] + ∑ (𝑦1 − 1)2𝑑−1

𝑖=1 [1 + 10 sin2(𝜋𝑦1+1) +

∑ 𝑢(𝑥𝑖 , 10, 100,4)𝑑
𝑖+1 ]  

30 [− 50,50] 0 

F13 𝐹13 = 0.1(sin2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)2[1 + 𝑠𝑖𝑛2(3𝜋𝑥1 +𝑑
𝑖+1

1)] + (𝑥𝑑 − 1)2 + 𝑠𝑖𝑛2(2𝜋𝑥𝑑)) + ∑ 𝑢(𝑥𝑖 , 5, 100,4)𝑑
𝑖=1   

30 [− 50,50] 0 

F14 
𝐹14 = [

1

500
+ ∑

1

𝑗+∑ (𝑥𝑖−𝑎𝑖𝑗)
62

𝑖=1

25
𝑗=1 ]

−1

  
2 [− 50,50] 0.998 

F15 
𝐹15 = ∑ [𝑎𝑖 −

𝑥1(𝑏𝑖
2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

]11
𝑖−1

2

  
4 [− 

65.536,65.536] 

0.0003075 

F16 𝐹16 = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4  2 [-5,5] -1.0316 

F17 
𝐹17 = (𝑥2 −

5.1

4𝜋2 𝑥1
2 +

5

𝜋
𝑥1 − 6)

2
+ 10 (1 −

1

8𝜋
) cos 𝑥1 + 10  

2 [-5, 10] 0.398 

F18 𝐹18 = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2 − 14𝑥2 + 6𝑥1𝑥2 +

3𝑥2
2)] ∗ [30 + (2𝑥1 − 3𝑥2)2 ∗ (18 − 32𝑥𝑖 + 12𝑥1

2 + 48𝑥2 −

36𝑥1𝑥2 + 27𝑥2
2)]  

2 [-2,2] 3 

F19 𝐹19 = − ∑ 𝑐𝑖
4
𝑖=1 exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

23
𝑖=1 )  3 [0,1] -3.86 

F20 𝐹20 = − ∑ 𝑐𝑖
4
𝑖=1 exp (− ∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)

26
𝑖=1 )  6 [0,1] -3.32 

F21 𝐹21 = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]5
𝑖=1

−1
  4 [0,10] -10.1532 

F22 𝐹22 = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]7
𝑖=1

−1
  4 [0,10] -10.4028 

F23 𝐹23 = − ∑ [(𝑋 − 𝑎𝑖)(𝑋 − 𝑎𝑖)𝑇 + 𝑐𝑖]10
𝑖=1

−1
  4 [0,10] -10.5363 
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Table 2 Design parameters 

Parameter Algorithms    

CWOA-IW WOA GWO PSO 

Number of iterations 500 500 500 500 

Number of runs 30 30 30 30 

Number of search agents 30 30 30 30 

𝒂⃗⃗⃗ 2 to 0 2 to 0 2 to 0 NA 

𝝆 2.59 NA NA NA 

𝒘𝒎𝒂𝒙 0.9 NA NA NA 

𝒘𝒎𝒊𝒏 0.4 NA NA NA 

 
The comparative analysis parameters used were the Optimal Value, the Average Optimal Value, the Standard 

Deviation and the Mean Absolute Error. 

 

6.2 Description of Power System Test Beds and System Data 

The developed optimization tool is examined using three standard test systems to evaluate its effectiveness. 

The number of iterations was set to 500 and the number of search agents set to 30. Algorithm performance 

is assessed in terms of solution quality and convergence speed, and the results are compared with existing 

optimization methods to demonstrate its capability of obtaining higher profit values. The three test systems 

comprise a 3-unit 10-bus system (Ravichandran & Subramanian, 2020), the IEEE-39 bus system with 10 

generating units(Dhaliwal & Dhillon, 2021), and the IEEE-118 bus system with 54 generating units (Illinois 

Institute of Technology, 2015) representing small, medium and large-scale test systems respectively. Detailed 

descriptions of the test system data are provided Tables 3, 4 and 5. 

 
Table 3 Description of 3 Generator test system 

Gen 

No. 

Pmin 

(MW) 

Pmax 

(MW) 

a(constant) 

($/h) 

b (linear) 

($/MWH) 

c(quadratic) 

($/MW2h) 

Startup 

cost ($) 

ramp up/down 

(MW/h)  

min 

up/down 

time(h) 

G1 100 600 500 10 0.002 450 100 3 

G2 100 400 300 8 0.0025 400 100 3 

G3 50 200 100 6 0.005 300 50 3 

 

Table 4 Description of 10 Generator test system 

Gen 

No. 

Pmin 

(MW) 

Pmax 

(MW) 

a(constant) 

($/h) 

b(linear) 

($/MWh) 

c(quadratic) 

($/MW2h) 

Startup 

cost ($) 

ramp up/down 

(MW/h)  

min 

up/down 

time(h) 

G1 150 455 1000 16.19 0.00048 4500 113.75 8 

G2 150 455 970 17.26 0.00031 5000 113.75 8 

G3 20 130 700 16.6 0.002 550 32.5 5 

G4 20 130 680 16.5 0.00211 560 32.5 5 

G5 25 162 450 19.7 0.00398 900 40.5 6 

G6 20 80 370 22.26 0.00712 170 20 3 

G7 25 85 480 27.74 0.00079 260 21.25 3 

G8 10 55 660 25.92 0.00413 30 13.75 1 

G9 10 55 665 27.27 0.00222 30 13.75 1 

G10 10 55 670 27.79 0.00173 30 13.75 1 
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Table 5 Description of 54 Generator test system 

Gen 

No. 

Pmin 

(MW) 

Pmax 

(MW) 

a(constant) 

($/h) 

b(linear) 

($/MWh) 

c(quadratic) 

($/MW2h) 

Startup 

cost ($) 

ramp up/down 

(MW/h)  

min 

up/down 

time(h) 

G1 5 30 31.67 26.2438 0.069663 40 15 1 

G2 5 30 31.67 26.2438 0.069663 40 15 1 

G3 5 30 31.67 26.2438 0.069663 40 15 1 

G4 150 300 6.78 12.8875 0.010875 440 150 8 

G5 100 300 6.78 12.8875 0.010875 110 150 8 

G6 10 30 31.67 26.2438 0.069663 40 15 1 

G7 25 100 10.15 17.82 0.0128 50 50 5 

G8 5 30 31.67 26.2438 0.069663 40 15 1 

G9 5 30 31.67 26.2438 0.069663 40 15 1 

G10 100 300 6.78 12.8875 0.010875 100 150 8 

G11 100 350 32.96 10.76 0.003 100 175 8 

G12 8 30 31.67 26.2438 0.069663 40 15 1 

G13 8 30 31.67 26.2438 0.069663 40 15 1 

G14 25 100 10.15 17.82 0.0128 50 50 5 

G15 8 30 31.67 26.2438 0.069663 40 15 1 

G16 25 100 10.15 17.82 0.0128 50 50 5 

G17 8 30 31.67 26.2438 0.069663 40 15 1 

G18 8 30 31.67 26.2438 0.069663 40 15 1 

G19 25 100 10.15 17.82 0.0128 59 50 5 

G20 50 250 28 12.3299 0.002401 100 125 8 

G21 50 250 28 12.3299 0.002401 100 125 8 

G22 25 100 10.15 17.82 0.0128 50 50 5 

G23 25 100 10.15 17.82 0.0128 50 50 5 

G24 50 200 39 13.29 0.0044 100 100 8 

G25 50 200 39 13.29 0.0044 100 100 8 

G26 25 100 10.15 17.82 0.0128 50 50 5 

G27 100 420 64.16 8.3391 0.01059 250 210 10 

G28 100 420 64.16 8.3391 0.01059 250 210 10 

G29 80 300 6.78 12.8875 0.010875 100 150 8 

G30 30 80 74.33 15.4708 0.045923 45 40 4 

G31 10 30 31.67 26.2438 0.069663 40 15 1 

G32 5 30 31.67 26.2438 0.069663 40 15 1 

G33 5 20 17.95 37.6968 0.028302 30 10 1 

G34 25 100 10.15 17.82 0.0128 50 50 5 

G35 25 100 10.15 17.82 0.0128 50 50 5 

G36 150 300 6.78 12.8875 0.010875 440 150 8 

G37 25 100 10.15 17.82 0.0128 50 50 5 

G38 10 30 31.67 26.2438 0.069663 40 15 1 

G39 100 300 32.96 10.76 0.003 440 150 8 

G40 50 200 6.78 12.8875 0.010875 400 100 8 

G41 8 20 17.95 37.6968 0.028302 30 10 1 
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G42 20 50 58.81 22.9423 0.009774 45 25 1 

G43 100 300 6.78 12.8875 0.010875 100 150 8 

G44 100 300 6.78 12.8875 0.010875 100 150 8 

G45 100 300 6.78 12.8875 0.010875 110 150 8 

G46 8 20 17.95 37.6968 0.028302 30 10 1 

G47 25 100 10.15 17.82 0.0128 50 50 5 

G48 25 100 10.15 17.82 0.0128 50 50 5 

G49 8 20 17.95 37.6968 0.028302 30 10 1 

G50 25 50 58.81 22.9423 0.009774 45 25 2 

G51 25 100 10.15 17.82 0.0128 50 50 5 

G52 25 100 10.15 17.82 0.0128 50 50 5 

G53 25 100 10.15 17.82 0.0128 50 50 5 

G54 25 50 58.81 22.9423 0.009774 45 25 2 

7. Results and Discussion 

7.1 Optimal Value, Mean Optimal Value, Standard Deviation and Mean Absolute Error 

Table 6 presents the optimal values, mean optimal values, standard deviations (SD), and mean absolute errors 

(MAE) obtained by WOA, PSO, GWO, and the proposed CWOA-IW across the 23 classical benchmark 

functions. The results demonstrate that CWOA-IW achieves superior performance in most test cases. 

Specifically, CWOA-IW attained the best optimal values in 5 out of 8 unimodal functions and 4 out of 6 

multimodal functions, outperforming WOA, PSO, and GWO. Furthermore, CWOA-IW successfully 

reached the known global optimum for all fixed-dimension multimodal functions. 

In terms of average optimal performance, CWOA-IW produced the best mean optimal values in 16 out of 

the 23 benchmark functions, whereas GWO and PSO achieved this in only 2 functions each, and WOA in 

none. All algorithms recorded identical mean optimal values for 3 functions. These results highlight the 

proposed algorithm’s ability to consistently produce high-quality solutions. 

Regarding robustness and precision, CWOA-IW achieved the lowest standard deviation in 16 of the 23 

benchmark functions, compared to 0 for WOA, 1 for GWO, and 6 for PSO. Similarly, CWOA-IW obtained 

the lowest MAE in 15 of the 23 functions, outperforming WOA (0), GWO (3), and PSO (4). Notably, 

CWOA-IW and GWO observed identical MAE values for function F19. These findings confirm that 

CWOA-IW offers superior consistency and accuracy in locating near-optimal solutions. Overall, CWOA-

IW demonstrated the most effective and reliable performance among all the compared algorithms. 

 

7.2 Convergence Behaviour 

The figures below show the convergence curves of the four algorithms for selected benchmark functions.  

It can be seen in functions F1, F3, F4, F9 and F11 that the curve of CWOA-IW rapidly decreases as the 

number of iterations increase and obtains the best optimal values. This is indicative of the excellent 

exploitation ability of CWOA-IW, its ability to avoid local minima and its higher optimization accuracy. 

Convergence towards the optimum in the final iterations can be seen in F7 and F10. This shows that the 

algorithm kept searching the search space for good solutions. It can also be seen in functions F8, F17 and 

F21 that CWOA-IW obtains the optimal value in the shortest time as compared to the other algorithms. 

Overall, CWOA-IW exhibits a superior convergence behaviour with faster convergence, higher accuracy and 

stronger global search capability as compared to WOA, GWO and PSO. 

 
Table 6 Comparison of optimization results obtained for the benchmark functions 
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Function  CWOA-IW WOA GWO PSO 

f1  Optimum Value 1.1103E-260 1.4821E-87 7.4222E-255 3.8144E-14 
 Mean 2.3131E-244 1.3264E-73 4076.7702 1.9490E-06 
 Standard Deviation 0 6.7732E-73 2940.3352 7.6881E-06 
 Mean Absolute Error 2.3131E-244 1.3264E-73 4076.7702 1.9490E-06 
      

f2  Optimum Value 4.0295E-137 4.9554E-58 6.0120E-137 0.0013 
 Mean 3.2034E-130 3.5276E-51 5.9607E-128 0.0579 
 Standard Deviation 8.3185E-130 1.0923E-50 3.0894E-127 0.0894 
 Mean Absolute Error 3.2034E-130 3.5276E-51 5.9607E-128 0.0579 
      

f3  Optimum Value 2.4693E-188 16061.8282 2.7373E-187 13.4267 
 Mean 7.7711E-184 42535.9013 2.4956E-06 89.4264 
 Standard Deviation 0 16924.7007 1.0284E-05 63.1512 
 Mean Absolute Error 7.7711E-184 42535.9013 2.4956E-06 89.4264 
      

f4  Optimum Value 1.2175E-114 0.0837 3.9994E-100 0.8938 
 Mean 6.1775E-99 51.9006 5.0620E-07 2.1200 
 Standard Deviation 3.3831E-98 26.5786 6.3060E-07 0.8789 
 Mean Absolute Error 6.1775E-99 51.9006 5.0620E-07 2.1200 
      

f5  Optimum Value 27.2469 27.2295 25.9896 1.9859 
 Mean 27.8744 28.1624 27.1213 61.3549 
 Standard Deviation 0.3051 0.4397 0.8578 90.8315 
 Mean Absolute Error 27.8744 28.1624 27.1213 61.3549 
      

f6  Optimum Value 0.0753 0.0687 0.1011 1.5898E-11 
 Mean 0.2650 0.3695 0.7402 2.7299E-06 
 Standard Deviation 0.1155 0.2163 0.4037 1.0057E-05 
 Mean Absolute Error 0.2650 0.3695 0.7402 2.7299E-06 
      

f7  Optimum Value 8.3101E-07 3.4604E-05 0.0003 0.0126 
 Mean 9.8937E-05 2.7459E-03 0.0016 0.0278 
 Standard Deviation 8.3604E-05 3.4929E-03 0.0008 0.0122 
 Mean Absolute Error 9.8937E-05 2.7459E-03 0.0016 0.0278 
      

f8  Optimum Value -12569.4798 -12568.9808 -12566.5036 -8206.8712 
 Mean -12281.2736 -10386.1810 -6398.9191 -6581.7763 
 Standard Deviation 782.7635 2017.0787 1406.9593 701.8604 
 Mean Absolute Error 288.2264 2183.3190 6170.5809 5987.7237 
      

f9  Optimum Value 0 0 0 20.8941 
 Mean 0 5.6843E-15 2.2012 50.3780 
 Standard Deviation 0 2.2884E-14 2.7835 14.6799 
 Mean Absolute Error 0 5.6843E-15 2.2012 50.3780 
      

f10  Optimum Value 4.4409E-16 4.4409E-16 8.8818E-16 7.3692E-08 
 Mean 1.8652E-15 3.6415E-15 9.8987E-14 1.5253 
 Standard Deviation 1.7702E-15 2.3511E-15 2.5440E-14 0.6926 
 Mean Absolute Error 1.8652E-15 3.6415E-15 9.8987E-14 1.5253 
      

f11  Optimum Value 0 0 0 1.7620E-11 
 Mean 0 3.7007E-18 0.0063 0.0311 
 Standard Deviation 0 2.0270E-17 0.0129 0.0304 
 Mean Absolute Error 0 3.7007E-18 0.0063 0.0311 
      

f12  Optimum Value 0.0022 0.0045 0.0059 8.9545E-14 
 Mean 0.0090 0.0214 0.0427 0.1037 
 Standard Deviation 0.0034 0.0170 0.0223 0.1722 
 Mean Absolute Error 0.0090 0.0214 0.0427 0.1037 
      

f13  Optimum Value 0.0345 0.1145 0.0991 3.0888E-14 
 Mean 0.1948 0.4672 0.6607 0.0809 
 Standard Deviation 0.0910 0.2254 0.2762 0.2322 
 Mean Absolute Error 0.1948 0.4672 0.6607 0.0809 
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f14  Optimum Value 0.9980 0.9980 0.9980 0.9980 
 Mean 0.9980 2.9615 4.1999 3.1648 
 Standard Deviation 1.1959E-10 3.2333 3.9479 2.7497 
 Mean Absolute Error 0.0020 1.9635 3.2011 2.1660 
      

f15  Optimum Value 0.0003 0.0003 0.0003 0.0003 
 Mean 0.0003 0.0006 0.0025 0.0043 
 Standard Deviation 2.9265E-05 0.0003 0.0061 0.0116 
 Mean Absolute Error 4.0789E-05 0.0003 0.0022 0.0040 
      

f16  Optimum Value -1.0316 -1.0316 -1.0316 -1.0316 
 Mean -1.0316 -1.0316 -1.0316 -1.0316 
 Standard Deviation 0.0001 5.8702E-09 1.0395E-05 6.6486E-16 
 Mean Absolute Error 8.2980E-05 2.8452E-05 2.8437E-05 2.8453E-05 
      

f17  Optimum Value 0.3979 0.3979 0.3979 0.3979 
 Mean 0.3979 0.3979 0.3979 0.3979 
 Standard Deviation 1.9292E-06 7.9698E-05 1.4228E-06 0 
 Mean Absolute Error 1.3466E-06 2.2612E-05 1.2356E-06 9.3465E-11 
      

f18  Optimum Value 3.0000 3.0000 3.0000 3.0000 
 Mean 3.0000 3.0000 3.0000 3.0000 
 Standard Deviation 0.0001 0.0002 3.3917E-05 2.0384E-15 
 Mean Absolute Error 0.0001 5.3346E-05 2.8450E-05 7.7138E-14 
      

f19  Optimum Value -3.8628 -3.8628 -3.8628 -3.8628 
 Mean -3.8622 -3.8574 -3.8610 -3.8628 
 Standard Deviation 0.0009 0.0078 0.0024 2.7101E-15 
 Mean Absolute Error 0.0023 0.0043 0.0023 0.0028 
      

f20  Optimum Value -3.3220 -3.3220 -3.3220 -3.3220 
 Mean -3.3212 -3.2004 -3.2516 -3.2903 
 Standard Deviation 0.0007 0.1322 0.0757 0.0535 
 Mean Absolute Error 0.0014 0.1198 0.0704 0.0326 
      

f21  Optimum Value -10.1529 -10.1514 -10.1528 -10.1532 
 Mean -9.7991 -8.3017 -9.2238 -5.8990 
 Standard Deviation 1.2898 2.5601 2.1476 3.6041 
 Mean Absolute Error 0.3541 1.8515 0.9294 4.2542 
      

f22  Optimum Value -10.4028 -10.4020 -10.4027 -10.4029 
 Mean -10.2061 -7.8140 -10.2253 -7.5190 
 Standard Deviation 0.9676 3.0296 0.9630 3.6209 
 Mean Absolute Error 0.1967 2.5888 0.1775 2.8839 
      

f23  Optimum Value -10.5362 -10.5339 -10.5363 -10.5364 
 Mean -10.5248 -6.4305 -9.9935 -6.8461 
 Standard Deviation 0.0147 3.2069 2.0582 3.7918 
 Mean Absolute Error 0.0115 4.1058 0.5428 3.6903 
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      Figure 3 Convergence Curves for F1              Figure 4 Convergence Curves for F2 

 

 
      Figure 5 Convergence Curves for F3                   Figure 6 Convergence Curves for F4 

 
       Figure 7 Convergence Curves for F5               Figure 8 Convergence Curves for F6 
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       Figure 9 Convergence Curves for F7              Figure 10 Convergence Curves for F8 

 

 
       Figure 11 Convergence Curves for F9              Figure 12 Convergence Curves for F10              

 
      Figure 13 Convergence Curves for F11             Figure 14 Convergence Curves for F12 
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     Figure 15 Convergence Curves for F13             Figure 16 Convergence Curves for F14 

 

 
       Figure 17 Convergence Curves for F15             Figure 18 Convergence Curves for F16 

 

 

 
       Figure 19 Convergence Curves for F17              Figure 20 Convergence Curves for F18 
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      Figure 21 Convergence Curves for F19             Figure 22 Convergence Curves for F20 

 

 
      Figure 23 Convergence Curves for F21              Figure 24 Convergence Curves for F22 

 

 

 
      Figure 25 Convergence Curves for F23 
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7.3 Wilcoxon Signed-Rank Test 

The statistical significance of the proposed CWOA-IW, GWO, PSO and WOA was evaluated using the 

Wilcoxon signed-rank test at a 5% significance level. Table X shows that CWOA-IW exhibits a significant 

improvement over the standard WOA, with a p-value of 0.000281. CWOA-IW also shows a marginal 

improvement in performance over PSO, with a p-value of 0.0447. No statistically significant difference is 

observed when compared with GWO, suggesting comparable performance on this benchmark suite. The 

win-lose/tie counts further support these findings, with CWOA-IW achieving higher wins against all other 

algorithms. These results show that CWOA-IW provides consistent and superior performance over the 

benchmark suit compared to the other algorithms. 

 
Table 7 Wilcoxon Signed Test Results for Algorithms 

Algorithm p-values n/w/l/t 

CWOA-IW vs WOA 0.000281 23/19/2/2 

CWOA-IW vs PSO 0.0447 23/13/10/0 

CWOA-IW vs GWO 0.3382 23/14/8/1 

 
7.4 Power Generation 

The power demand and market pricing data for the 3 standard test systems were obtained from(Dhaliwal & 
Dhillon, 2021; Ravichandran & Subramanian, 2020). Tables 8, 9 and 10 show the optimal scheduled 
generation for all units at each hour as obtained by CWOA-IW. 
 

Table 8 Load profile & Market price data for 3 Generator test system 

H(h) Power Demand (MW) Power Generation (MW) Prices ($/h) 

1 170 170 10.55 

2 250 250 10.35 

3 400 400 9.00 

4 520 520 9.45 

5 700 700 10.00 

6 1050 900 11.25 

7 1100 1000 11.30 

8 800 800 10.65 

9 650 650 10.35 

10 330 330 11.20 

11 400 400 10.75 

12 550 500 10.60 

TOTAL 6920 6620  

 

7.5 Profit 

Table 11 presents the profits achieved by each algorithm across the test systems, demonstrating their 

effectiveness in solving the complex problem of profit maximization for GENCOs under various 

constraints. The percentages in brackets show the profit reduction relative to the profits achieved by the 

CWOA-IW algorithm. Table 11 indicates that the proposed CWOA-IW algorithm achieved the highest 

profits across all generator systems, clearly outperforming WOA, GWO, and PSO. The percentages in 

brackets represent how much lower each competing algorithm’s profit was compared to CWOA-IW. For 
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example, in the 3-generator system, WOA, GWO, and PSO achieved profits that were 69.9%, 176.6%, and 

401.0% lower, respectively, showing a significant advantage for CWOA-IW. Although the performance gap 

narrows in the 54-generator system (0.45% for WOA, 35.7% for GWO, and 3.6% for PSO), CWOA-IW 

still produces the highest and most consistent profits. This demonstrates its robustness, scalability, and 

superior convergence characteristics in solving the GENCO profit maximization problem. Figures 26-28 

give a graphical representation of the values in Table 11. 

The proposed CWOA-IW achieves superior results across the benchmark suite, showing a better balance 

between exploration and exploitation, and a lower tendency for local optima entrapment. These 

characteristics are crucial for profit maximization for generating companies due to the non-convex search 

space and highly constrained nature of the task. Consequently, the improved capabilities of the proposed 

CWOA-IW demonstrated in the benchmark functions translate into higher profits when applied to 

practical power system test beds, including the 3 unit 10-bus system, the IEEE-39 bus system and the 

IEEE-118 bus system. 

 
Table 9 Load profile & Market price data for 10 Generator test system 

H(h) Power Demand (MW) Power Generation (MW) Prices ($/h) 

1 700 700 22.15 

2 750 750 22.00 

3 850 830 23.10 

4 900 766.2 22.65 

5 1000 821.2 23.25 

6 1100 640 22.95 

7 1150 697.9 22.50 

8 1200 560.7 22.15 

9 1300 1086.8 22.80 

10 1400 1331.4 29.35 

11 1450 1275.6 30.15 

12 1500 1460.4 31.65 

13 1400 1283.1 24.60 

14 1300 1138.1 24.50 

15 1200 1200 22.50 

16 1050 1050 22.30 

17 1000 1000 22.25 

18 1100 1100 22.05 

19 1200 1200 22.20 

20 1400 1346.1 22.65 

21 1300 1293.1 23.10 

22 1100 1100 22.95 

23 900 900 22.75 

24 800 800 22.55 

TOTAL 27050 24330.6  
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Table 10 Load profile & Market price data for 54 Generator test system 

H(h) Power Demand (MW) Power Generation (MW) Prices ($/h) 

1 2800 2800 22.15 

2 3000 3000 22.00 

3 3400 3400 23.10 

4 3800 3800 22.65 

5 4000 4000 23.25 

6 4400 4400 22.95 

7 4600 4600 22.50 

8 4800 4800 22.15 

9 5200 5200 22.80 

10 5600 5600 29.35 

11 5800 5800 30.15 

12 6000 5600 31.65 

13 5600 5200 24.60 

14 5200 4800 24.50 

15 4800 4200 22.50 

16 4200 4000 22.30 

17 4000 4400 22.25 

18 4400 4800 22.05 

19 4800 5600 22.20 

20 5600 5200 22.65 

21 5200 4400 23.10 

22 4400 3600 22.95 

23 3600 3200 22.75 

24 3200 5600 22.55 

TOTAL 108400 108134  

 

Table 11 Simulation Results for Profit Maximization Tool 

ALGORITHM 3 GENERATOR SYSTEM 10 GENERATOR SYSTEM 54 GENERATOR SYSTEM 

CWOA-IW $4,229.33 $9,325.62 $828,289.99 

WOA $2,489.30 (69.9%) $6,728.73 (39%) $824,556.51 (0.45%) 

GWO $1,529.12 (176.59%) $6,532.94  (43.16%) $610,464.10 (35.68%) 

PSO $844.15 (401.02%) $3,867.71 (141.81%) $799,272.39 (3.63%) 
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Figure 26 Profit Results for 3 Generator test system 

 
Figure 27 Profit Results for 10 Generator test system 

 
Figure 28 Profit Results for 54 Generator test system 

 
 



Electrical Engineering and Energy | (2026) 5:1 

 
Danso et al. (2026),  Electr. Eng. Energy                                                                                                                                                                           97 

 

8. Conclusion 

This study proposes an enhanced Whale Optimization Algorithm using Chaotic Mapping and Inertia Weight 
(CWOA-IW) to address the limitations of standard WOA, namely premature convergence, poor population 
diversity, and exploration-exploitation imbalance. CWOA-IW achieves a more diverse population 
distribution through the integration of a cubic chaotic map during initialization, while the introduction of an 
inertia weight enhances its convergence behaviour and search adaptability throughout the optimization 
process. 
Experimental results on classical benchmark functions demonstrate the superior performance of CWOA-
IW in terms of convergence behaviour and solution quality. Furthermore, when applied to the profit 
maximization problem of GENCOs, the improved algorithm optimizes the generation scheduling under the 
tested market and operational constraints. The improved algorithm achieved higher profits compared to 
conventional metaheuristic algorithms such as WOA, GWO and PSO for three power system test beds. This 
suggests CWOA-IW’s robustness and scalability for real-world electricity market operations. Overall, 
CWOA-IW provides a promising and scalable optimization framework for solving complex engineering and 
power system optimization problems. 
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