Electrical Engineering and Energy | (2026) 5:1

ELECTRICAL
ENGINEERING

AND ENERGY

OPEN ACCESS

Submitted: 15 December 2025
Accepted: 08 January 2026
Online First: 11 January 2026

Corresponding author
Amon Okemo,
amonokemo8@gmail.com

DOI: 10.64470/ elene.2026.20

@ Copyright, Authors,
Distributed under Creative
Commons CC-BY 4.0

Automated Conversion of Unstructured
Geospatial Feeder Data into Analytical
Models: An 11 kV Case Study

Amon Okemo"*, Christopher Maina Mutiithi'**, and John Nderu®

! Murang'a University of Technology, Murang'a, Kenya
2 Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

Abstract: The modernization of power distribution grids, driven by the integration
of DER, necessitates advanced modelling capabilities. A critical challenge is the
semantic gap between the extensive geospatial asset data and the detailed electrical
models required for engineering analysis. This data is often stored in static,
unstructured KMZ formats that contain inherent topological errors. To address
this, this paper presents a novel low-cost, Python framework that fully automates
the conversion of this raw GIS data into solvable mathematical models for
computation. This process generates executable files for industry-standard, script-
based simulators such as MATPOWER and OpenDSS. The framework's cotre
technical contributions include an XPath and Regex-based engine for metadata
extraction. A graph-theory pipeline then utilizes a Minimum Spanning Tree (MST)
algorithm to algorithmically heal topological disconnections. A Dijkstra-based
method is then used for model abstraction. The core methodology was first
validated using a bidirectional, reverse-engineering process on a 4-bus test case. This
confirmed a lossless round-trip conversion to and from a data-rich KMZ format.
Subsequently, it was applied to a complex, real-world 11 kV Kenyan distribution
feeder. The generated model converged in a Newton-Raphson power flow.
This demonstrated its utility as a powerful diagnostic instrument by enabling
detailed feeder voltage profiling and loss analysis. Results were cross-validated
against DIgSILENT PowerFactory, a graphic-based simulator, showing excellent
numerical agreement. This study validates a scalable framework that transforms
static, error-prone GIS data into dynamic, multi-platform diagnostic models. This
approach provides a feasible pathway to accelerate grid modernization.

Keywords Data-driven diagnostics, Distribution networks, KMZ metadata
extraction, Power system modelling, Topological healing

1. Introduction

The global energy landscape is undergoing a profound transformation. This shift is driven by the urgent

need for decarbonization and the increasing integration of Distributed Energy Resources (DERs) such as

solar photovoltaics

and electric vehicles (Matanov & Nankinsky, 2021). This evolution places

unprecedented complexity on electrical distribution networks. These networks were not originally designed

for bidirectional power flows or dynamic operational profiles. Consequently, advanced modelling,

simulation and analysis has become paramount. Utilities must effectively plan grid reinforcements to ensure
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reliability and maintain power quality (Javed et al., 2021; Mohd Azmi et al., 2022).

A critical enabler for such analysis is the availability of accurate network models. However, a fundamental
semantic gap persists between the Geographic Information Systems (GIS) and engineering software
(Rahman et al., 2020). GIS formats like KML/KMZ ate excellent for visualization but inherently lack the
structured electrical metadata required for direct simulation (Geth et al., 2023; T6th et al., 2020). This gap
creates a significant operational bottleneck. The process of manually interpreting a KMZ file into analytical
format is a well-documented challenge (Abeysinghe et al., 2021; Patel et al., 2025). This manual translation
of visual GIS maps into solvable analytical models is slow, labour-intensive and prone to error (AL-Jumaili
et al., 2023; Mukherjee et al., 2020).

This challenge is particularly acute for distribution utilities in rapidly developing regions, where operational
excellence is a central pillar of strategic planning. For instance, the Kenyan distribution utility aims to reduce
system losses from a baseline of 23% to a target of 15.5% (Kenya Power, 2023). A core strategy to achieve
this is energy accounting at granular feeder and transformer levels. However, performing such analysis is
contingent upon having accurate simulation models. The manual conversion process from the extensive
KMZ asset archives severely hinders these data-driven diagnostic efforts.

Comprehensive standards like the Common Information Model (CIM) exist to promote interoperability,
but their implementation remains complex and costly for many utilities (Anderson et al., 2022). Recent
academic research has proposed various methods to automate model generation, yet limitations persist
when dealing with the data realities of many utilities. Studies by Deka et al. (2024) and Subasic et al. (2022)
focused on inferring network topology from operational measurements. These data-driven methods
leverage time-series voltage correlations from smart meters to deduce connectivity. While effective for real-
time grid calibration, these methods utilize a data-driven approach that presupposes a fully deployed
Advanced Metering Infrastructure (AMI). This is a capital-intensive resource often unavailable in
developing regions. In contrast to these measurement-driven inference methods, our approach focuses on
the structural analysis of the static, as-is geospatial asset data, which does not require real-time operational
measurements.

Conversely, Montano-Martinez et al. (2024) proposed using external datasets to correct and enhance
existing GIS data. This includes using OpenStreetMap and municipal parcel data to correct asset coordinate
errors. However, this approach relies on the accuracy of third-party data rather than the udlity's own
records. Furthermore, existing open-source conversion tools, such as the QGIS20penDSS plugin, are
typically designed for structured GIS formats like Shapefiles. They fail when confronted with the
unstructured, free-text metadata typical of KML/KMZ files used in the field (De-Jests-Grullén et al.,
2024).

These existing methods fail to address the unique challenge presented by KML/KMZ files. This format is
inherently designed for visual presentation rather than engineering analysis. It is characterized by
unstructured text descriptions and a lack of topological connectivity. The specific research gap is the lack
of an integrated pipeline that can autonomously process these error-prone files. Such a pipeline must heal
inherent topological disconnections and generate a fully parameterized model, without reliance on
operational data streams or external structured databases. This paper presents a complementary approach.
It introduces a framework that performs topological healing based on the geographical proximity of assets
found within a single, self-contained KML/KMZ file.

To clearly distinguish the contributions of this study from previous literature, this research introduces three
specific innovations. First, it eliminates the dependency on dynamic sensor data by reconstructing network
topology solely from static asset maps using Graph Theory. This provides a viable solution for utilities
that have not yet deployed AMI. Second, it automates metadata extraction through a novel regex engine
designed to parse non-standardized HTML descriptions. This directly addresses the rigidity that causes
previous conversion tools to fail on unstructured data. Finally, it bridges the technological gap for
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developing nations by establishing a low-cost, open-source pathway to digital twins. This is specifically
tailored for utilities that rely on KML/KMZ as their primary system of record.

The framework's scalability and practical utility are demonstrated through its application to a large-scale,
real-world utility feeder. In this case, it functioned as a powerful diagnostic tool for identifying operational
issues like voltage violations. A rigorous validation process established the resulting model’s high fidelity
and multi-platform compatibility. This showed successful convergence and excellent numerical agreement

across open-source environments and commercial-grade simulators (Khanh et al., 2025; Montenegro et
al., 2022).

2. Methodology

The framework was implemented in Python (v3.9) environment. It leverages a suite of open-source
libraries, including Pandas for data manipulation, LXML for KML parsing and NetworkX for graph-based
topological analysis. The methodology follows a systematic, multi-stage pipeline designed to autonomously
process raw, unstructured KMZ data into a fully parameterized, solvable power system model. This final

model is then used to generate executable scripts for multiple industry-standard simulators including
MATPOWER and OpenDSS, as illustrated in Figure 1.

Raw GIS Input Data
Unstructured Utility KMZ File

l

Data Ingestion & Filtering

Parses KMZ and isolates electrical assets

'

Topological Healing
Builds and algorithmically heals network graph

l

Model Abstraction

Consolidates the graph into a bus-branch model

Canonical Model Parameterization
Calculates physical and per-unit parameters
Simulation Model Generation
Formats model into MATPOWER & OpenDSS scripts

Power Flow Simulation & Analysis
Solves the model and generates diagnostics

Figure 1 Conceptual workflow of the automated KMZ to Simulation framework.
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2.1. Data ingestion and metadata-driven filtering

The process begins by ingesting a standard utility-grade KMZ file, which is a zipped archive containing
more KML documents. The framework unzips the archive in memory and parses the primary KML
document using the LXML library. An XPath query is used to iterate through all placemark elements, which
represent individual geospatial assets. For each element, descriptive metadata and geospatial are extracted
from the HTML-formatted description tag using Regular Expressions (Regex).

A critical challenge is distinguishing the core electrical network from thousands of non-essential elements,
such as low voltage poles or purely visual markers. To solve this, a metadata-driven filtering heuristic is
applied. It inspects attributes such as origin of the element and feeder of the element to ensure the asset
belongs to the target circuit. Assets belonging to adjacent feeders are automatically discarded. The algorithm
then classifies the remaining placemarks as valid electrical components based on the presence of specific
technical keywords.

For instance, a line segment is classified as a true medium voltage electrical branch only if its description
contains a non-null attribute such as type of conductor, size of the conductor and length (km). The
framework assumes that these valid line segments are explicitly represented in the KMZ as paths connecting
two distinct asset placemarks (such as a line from pole A to pole B). The subsequent topological healing
step (Section 2.2) is then applied to connect these defined segments or components where topological gaps
exist. The length attribute is particularly critical, as it represents the physical span between individual poles
in the raw data. Similarly, a point placemark is identified as a transformer only if it contains attributes such
as substation rating (kVA), substation number and number of meters. Non-electrical assets like poles, stay
wires or visual pointers typically lack these specific electrical attributes and are therefore discarded. This
heuristic operates on a principle of positive identification: only elements containing explicit, recognized
electrical keywords or attributes (such as 'kVA', 'conductor', 'feeder') are classified as valid assets.
Consequently, non-essential elements such as lighting poles, stay wires, or visual markers, which inherently
lack these specific identifiers, are automatically filtered out. This method proved highly effective,
successfully isolating the core electrical network for subsequent processing,

2.2. Topological healing of network connectivity gaps

Raw, visually digitized GIS data is often topologically fragmented, containing gaps that would cause a
simulation to fail. The framework implements an automated topological healing algorithm based on graph
theory using the NetworkX library. It utilizes two-dimensional geospatial coordinates (latitude and
longitude) for all calculations. While KML supports altitude, distribution feeders in the studied region
generally follow the terrain gradient. Consequently, the difference between the 2D geodesic length and the
3D slant length is negligible for steady-state power flow analysis. Therefore, the framework calculates the
missing length across topological gaps using the 2D Haversine formula, which determines the shortest
great-circle distance between two points on the Earth's surface.

This healing process is implemented using a graph-theory algorithm that involves three key steps:

Graph construction: An initial network graph, G=(1",E), is created from the filtered electrical assets. The
vertices (V) represent the start and end coordinates of these components, and the edges (E) represent the
explicit line segments themselves.

Disconnected component identification: A standard connected components algorithm is run on
graph G to identify the set of all disconnected subgraphs, C = {Cy, Cy,..., C}.

Algorithmic Healing: To bridge the gaps between these islands, a weighted, complete meta-graph, G' =
(V',E"), is constructed where each vertex v; € V' represents a component C; € C. The weight w(e; ;) of
an edge between any two vertices v; and v} is the minimum geographical distance between their respective

components. This distance d is calculated using the Haversine formula, which proceeds in three steps.
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First, the component a, representing the squate of half the chord length, is calculated using Equation (1).
Next, the angular distance ¢ (in radians) is determined using Equation (2). Finally, the physical distance d is
computed using Equation (3).

AL

a = sin® (%) + cos(¢1) cos(¢h,) sin? (7) 1)
c=2- atanZ(\/E,\/l - a) 2
d=R-c 3)

o 1, O, are the latitudes of the two points.

o A¢, AZ are the differences in latitude and longitude, respectively.

e ais the square of half the chord length between the points.

e ¢ is the angular distance in radians.

e R is the Earth's radius (approx. 6,371 km).
A Minimum Spanning Tree (MST) is then computed for this meta-graph G'. The edges of the MST represent
the most efficient set of virtual connections required to join all islands into a single, contiguous and
topologically correct network with the shortest possible total length of added connections. This approach
relies on the principle that distribution networks are designed to minimize conductor usage. Therefore, the
MST algorithm inherently associates branching points with the nearest physical pole, validating connectivity
without manual intervention. These connections are added back to the original graph G to form the final

healed graph, Geaa.
2.3. Model consolidation and abstraction

The detailed healed graph is consolidated into an electrically equivalent bus-branch model suitable for
simulation. First, the algorithm identifies major nodes (Vingjor © V (Gheatea)) Which become the buses in the
tinal model. This set consists of three distinct, programmatically identified categories: the source substation
node, all transformer location nodes and all junction nodes. A junction is explicitly defined and identified
by the algorithm as any node in the healed graph with a degree greater than two. This ensures that all
branching points in the network topology are correctly preserved as buses in the final model.

Next, for every pair of major nodes (U, V) € Vi, Dijkstra's algorithm is used to find the shortest

ajor>
path, p(u, v), in the healed graph. If this path contains no other major nodes, all its constituent segments
are consolidated into a single equivalent branch. This consolidation process is strictly geometric; it traces
the existing physical path defined by the intermediate pole coordinates in the KMZ file. No new electrical
branches are inferred during this stage; the algorithm solely aggregates the series of physical segments
between major nodes into a single equivalent electrical branch. The length of this new branch, Ly,anch(u,v)»

is the sum of the lengths of all its individual segments, as given by Equation (4).

Lbranch(u,v) = Z(i,j)ep(u,v) lsegment(i,j) “

Finally, an iterative routine merges any buses that are co-located or connected by a zero-length branch,
resulting in a definitive set of buses and branches that form the canonical representation of the feeder.

2.4. Canonical model parameterization and load allocation

The abstracted bus-branch model is fully parametetized based on the system's nominal base values of power

(Shasemva) and voltage (Vyase kv), from which the base impedance (Ziase) is detived using Equation (5):
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Zpase [Q] = M ®)

S base, MVA

Load modelling: The active power (Pq;) and reactive power ((y)) for each load bus are calculated from the
associated transformer kVA rating (kVA) and user-defined parameters. Two alternative scenarios are
provided:

i.  Proportional peak load allocation: The active power is allocated proportionally to transformer
ratings using HEquation (6), where Py ol is the total feeder load and Ny is the number of
transformers.

ii.  Uniform Utilization Factor (TUF) allocation: Alternatively, for a scenario based on a uniform
TUE, active power is calculated using Equation (7).

Reactive power is then determined by the system power factor (PF), as shown in Equation (8).

kVA;
P di = peak,total X <%> (6>
kVA;
Py = (1ot) x TUF x PF %
Qi = Pg; % tan(cos*(PF)) ©)

Line impedance parameterization: For each consolidated medium-voltage line of length Ly , its total
per-phase resistance (R'a/km) and reactance (X'o/m) ate retrieved from a predefined conductor library.
These physical values are then converted to their per-unit equivalents using Equation (9) for resistance and
Equation (10) for reactance:

/
_ RQ/kaLkm

T 9
p-u. Zypase ( )
X.("z/km XLkm
Xpu = ———— 10
pt Zpase (10

Transformer impedance parameterization: Transformers are modelled as a branch connecting medium-
voltage bus to a newly created low-voltage bus. The impedance is detived from the transformet's kVA
rating (S juml), percentage impedance (%Z)y,)), and X/R ratio. The impedance is first calculated in per-unit
on the transformer's own base using Equation (11) and then converted to the system base using the

standard base-change formula (12). This value is then resolved into its resistive (1;,,,) and reactive (X,,,)

components.
_ SZymi
Zp.u., tx-base = "1go (0
7 _ % Shase,MVA (12)
p.u, system — 4p.u, tx-base Stx km1/1000

2.5. Simulation script generation

The final step translates the fully parameterized canonical model into executable scripts for target
simulation engines. The generated models are designed to be solved using a standard Newton-Raphson
algorithm to find a solution for the complex bus voltages (V) in the AC power flow Equations (13, 14),

which express the balance of active power (P;) and reactive power (Q;) at each bus i.

P; = YRVl Vil (G cos(8; — 8y) + By sin(§; — 8;)) (13)
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Q; = Xi=1IVillVie|(Gy sin(8; — 8y) — By cos(8; — 8y)) (14

where:

e N is the total number of buses.

e |V;] and |V ] are the voltage magnitudes at bus 7 and bus 4.

e §; and Jj are the voltage angles at bus 7 and bus 4.

e G, and By are the real and imaginary parts of the 7&-th element of the bus admittance matrix

(Yous)-

The framework generates executable scripts:
For MATPOWER: The data is assembled into the standard bus, branch and gen NumPy matrices and
packaged into a ppc dictionary structure, which can be solved by PYPOWER or exported as an executable
.m file.
For OpenDSS: The data is used to programmatically write a text-based .dss script, generating the necessary
New Linecode, New Line, New Transformer and New Load commands required by the OpenDSS engine.
This modular approach ensures that the core processing engine is independent of the final simulation
software, allowing for flexible output to multiple platforms.

3. Validation and Case Study Systems

The methodology was validated and its practical utility demonstrated through a two-part approach. First, a
bidirectional round-trip validation was performed on a standard test case to rigorously prove the integrity
and fidelity of the core data conversion process. Second, the framework was applied to a large-scale, real-
wortld feeder to demonstrate its scalability and effectiveness as a diagnostic tool.

3.1. Bidirectional framework validation: 4-bus proof-of-concept

To establish the fundamental integrity of the data conversion process, a bidirectional or round-trip
validation was performed using a standard 4-bus distribution network test case. The system, shown in
Figure 2, represents a simplified radial feeder and includes a slack bus (Bus 1), two PQ load buses (Bus 2
and 3), and a PV bus with an underlying load (Bus 4). The initial MATPOWER parameters for the system's
buses, generators and branches are detailed in Tables 1-3.

33/11 kV
Substation

small gen/ O_
local injection

Figure 2 Single-line diagram of the 4-bus distribution network test case used for methodology validation

2 3
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Table 1 Summary of initial bus parameters for the 4-bus test system.

Bus ID Type Pd Qd (kVAR) Vm (p.u.) Va (°) Base Voltage (kV) Vmax  Vmin
(kW)
1 3 (Slack Bus) 0 0 1.00 0 12.5 1.1 0.9
2 1 (PQ Bus) 0.4 0.2 1.00 0 12.5 1.1 0.9
3 1 (PQ Bus) 0.4 0.2 1.00 0 12.5 1.1 0.9
4 2 (PV Bus) 0.4 0.2 1.00 0 12.5 1.1 0.9

Table 1 Summary of initial generator parameters for the 4-bus test system

Bus Pg Qg Qmax Qmin Vg mBase Pmax Pmin
1D (MW) (MVAR) (MVAR) (MVAR) (p-u) (MVA) MW) (MW)
1 0 0 10 -10 1.05 100 10 0
4 0 0 10 -10 1.05 100 10 0

Table 2 Summary of initial branch parameters for the 4-bus test system

From Bus To Bus r(pu) X (p.u.) angle (°) status angmin (°) angmax (°)
2 3 0.003 0.006 0 1 -360 360
1 2 0.003 0.006 0 1 -360 360
4 1 0.003 0.006 0 1 -360 360

The validation followed three distinct phases:

i. Phase I (Forward Conversion: MATPOWER to a Data-Rich KMZ):
The goal of this phase was to simulate the creation of a utility-grade KMZ file from a known electrical
model. First, the initial MATPOWER case data was enriched with descriptive asset metadata such as pole
types, substation names, and assigned geographical coordinates which established a plausible physical
layout. The framework then executed a parameter transformation algorithm, converting the per-unit
electrical data into physical values. A key step was to define the visual representation for each asset,
assigning specific shapes, colours and icons to each component. Finally, all of this information including
asset names, coordinates, visual styles and the crucial physical and electrical metadata was programmatically
written into a single KML file. This was achieved using the standardized metadata schema and packaged
into a self-contained KIMZ archive. This transformed the abstract MATPOWER model into a tangible,
visually rich and machine-readable geospatial file.

ii. Phase IT (Reverse Engineering: KMZ back to MATPOWER):
The generated KMZ file was used as the sole input for the reverse-engineering pipeline to test its data
extraction and model reconstruction capabilities. The framework first parsed the KML structure and
extracted all embedded metadata from the description tags for every placemark. A filtering algorithm was
then applied to distinguish electrical from non-electrical components. Assets without specific electrical
metadata (like intermediate poles) were correctly identified as purely structural and were not included in
the final electrical model. The extracted data for the remaining electrical components (the source, loads,
lines and transformer) was then used by the parameterization engine. This engine performed the inverse of
Phase I, converting the physical values back to the system's per-unit base to reconstruct a new set of bus,
generator and branch matrices from scratch, thereby recreating the analytical circuit.
iii.  Phase III (Fidelity Check and Visual Reconstruction):
The final phase was a two-part verification of the process. First, a direct numerical comparison was
performed between the matrices of the original MATPOWER model and the newly reconstructed model.
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This fidelity check confirmed a lossless, high-precision round-trip conversion, with the reconstructed
matrices being electrically equivalent to the originals. Second, the framework used the reconstructed model
to automatically generate visual outputs, including a clean, untangled IEEE-style busbar diagram. The
successful generation of this diagram, which correctly reflected the topology of the original 4-bus system,
served as a visual validation of the framework's topological interpretation and model reconstruction
capabilities. Together, these numerical and visual checks successfully proved the core concept of the
methodology.

3.2. Real-wortld application: an 11 kV distribution feeder case study

To demonstrate the framework's scalability and practical utility on a real-world problem, the automated
one-way conversion pipeline was applied to an operational 11 kV distribution feeder. The data was provided
by a national Kenyan utility as a single, large KMZ file containing 3,765 distinct placemarks representing
the feedet's assets, including lines, transformers, poles, and other visual markers.

The framework was configured for a typical planning study scenario based on utility-provided data: a total
feeder peak load of 2.7 MW at a power factor of 0.95. This complex, real-world dataset, with its inherent
data quality issues such as inconsistent metadata and the topological gaps inherent in visually digitized data,
served as the input for the automated conversion process. The key statistics from the automated processing
pipeline, which highlight the complexity of the data and the scale of the automated correction, are
summarized in Table 4.

Table 4 Key statistics from the automated model generation process for the 11 kV feeder

Parameter Value
Total Placemarks Processed 3,765
Identified Transformers 94
Identified Electrical Lines 101
Detected Disconnected Components 48
Algorithmically Healed Gaps 47
Final Model Buses (medium-voltage) 158
Final Model Branches (medium-voltage) 157

The topological healing algorithm proved essential, identifying 48 disconnected network islands. It then
created 47 virtual connections to form a single, contiguous graph algorithmically. Following this, the model
consolidation and iterative merging process produced the final, topologically correct radial network model.
This final model consists of 158 medium-voltage buses and 157 branches, which formed the basis for the
power flow analysis.

4. Results and Discussion

The methodology was successfully executed in both the validation and real-world application stages,
yielding verifiable and insightful results. The following sections detail the outcomes of the 4-bus proof-of-
concept, which confirmed the method's numerical fidelity, and the application to the large-scale utility
feeder, which demonstrated its scalability and diagnostic power.

4.1 Four-Bus validation results

The round-trip conversion process for the 4-bus test case was successful. The forward conversion (Phase
I) generated a data-rich KMZ file with all electrical and asset metadata correctly embedded, as illustrated
by the geospatial visualization in Figure 3. The reverse-engineering process (Phase II) accurately parsed this
KMZ file and reconstructed the bus, gen and branch matrices, confirming a high-fidelity, lossless
conversion.

In the final validation phase (Phase 11I), an AC power flow simulation on the reconstructed 4-bus model

Okemo et al. (2026), Electr. Eng. Energy 45



Electrical Engineering and Energy | (2026) 5:1

converged successfully. The key steady-state results are summarized in Table 5 and system summary Table

6. These results were numerically identical to four decimal places with a control simulation run on the
original case file in MATLAB/MATPOWER, robustly validating the entire bidirectional process.

33/11 kV
Substation

Slack Bus
1

small gen/

local injection

IEEE Style Busbar Diagram (Reconstructed Model)

!

f

Figure 3 Visual workflow of the 4-bus validation, from the original MATPOWER model (top-left) to geospatial visualization

Feeder Layggg Diagram (Reconstructed Model)

(bottom-left), and the automatically reconstructed analytical models (right)

Table 5 Solved bus voltage magnitudes and angles from the power flow solution on the KML-reconstructed 4-bus model,
confirming numerical fidelity

Bus VM (pu) Pd (MW) Qd (MVAr)
1 1.0500 0.000 0.000
2 1.0454 0.400 0.200
3 1.0430 0.400 0.200
4 1.0500 0.400 0.200

Table 6 System Summary from the power flow solution on the KML-reconstructed 4-bus model

Parameter MVAr
Total Generation 0.7262
Total Load 0.6000
Total Losses 0.1262

4.2 Case study: automated model generation and visualization

The application of the framework to the real-world 11 kV feeder demonstrated its effectiveness in handling

large, unstructured and topologically flawed utility data. The automated pipeline successfully transformed
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the raw geospatial data into a clean, solvable electrical model through a multi-stage process.

The process began with the raw KMZ data, a dense geospatial file containing 3,765 placemarks. In the first
step, the framework applied its metadata-driven filter to parse this data, successfully isolating the core
electrical assets. This crucial filtering step correctly identified the source substation, 94 transformers and
101 true medium-voltage line segments, while discarding 186 non-electrical marker lines and thousands of

irrelevant pole nodes, resulting in the clean extracted network shown in Figure 4.
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Figure 4 Extracted network from the raw KMZ data with relevant electrical assets

Analysis of this extracted network revealed that it was topologically fragmented into 48 disconnected
components. The topological healing algorithm was then executed, algorithmically adding 47 virtual
connections, shown as red dashed lines, to bridge these gaps. Subsequently, the model abstraction process
consolidated the detailed, pole-by-pole graph into a simplified, electrically equivalent bus-branch model
containing the final 158 medium-voltage buses and 157 branches. Figure 5 and Figure 6 show this final
healed and abstracted geographical model, which is now topologically complete and ready for
parameterization.
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Figure 6 Final abstracted geographical model, topologically complete and ready for parameterization

From this final model, the framework automatically generated a clean, untangled IEEE-style single-line
diagram (Figures 7 and 8). This schematic provides a purely logical representation of the network topology,
complete with the final bus numbering, transformer kVA ratings and consolidated medium-voltage branch

lengths, serving as the definitive, human-readable blueprint of the simulation model.
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Figure 7 Clean, untangled IEEE-style single-line diagram with medium-voltage buses

4.3 Case study: power flow analysis

Following the successful generation of the 158-bus (medium-voltage) model, an AC power flow was
executed to analyse the feedet's performance under the specified 2.7 MW peak load scenario. The
simulation, run using the Newton-Raphson solver in PYPOWER, successfully converged in 3 iterations, a
strong indicator of a well-posed and valid network model. The high-level performance metrics are
summatized in Table 7.

Table 7 High-level power flow analysis summary for the 11 kV feeder at 2.7 MW peak load

Parameter Value
Total Feeder Load 2.700 MW
Total Generation Required 2.814 MW
Total System Losses (MW) 0.114 MW
System Losses (%o) 4.05%
Minimum medium-voltage Voltage 0.937 p.u.
Bus with Minimum Voltage Bus 158
Maximum Line Current 156.31 A

The most significant finding of the analysis was the identification of considerable voltage drop along the
feeder's electrically distant sections. As detailed in the voltage profile plot (Figure 9), the voltage drops
steadily along the feeder with numerous buses operating close to the lower statutory limit of 0.90 p.u. The
most dropped condition was observed at Bus 158, the furthest point from the soutce, registering a voltage
0f 0.937 p.u. This result demonstrates the framework's capability as a powetful diagnostic instrument for
identifying specific network weaknesses that may require reinforcement to maintain power quality.
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The geographical distribution of these results is visualized in the heat map shown in Figure 10. This map

clearly illustrates the spatial nature of the power quality issue, with healthy voltages (green) near the source

substation and progressive voltage drops (yellow) along the feedet's extremities. This result demonstrates

the framework's capability not just as a modelling tool, but as a powerful diagnostic instrument for

identifying specific geographical areas with network weaknesses that may require reinforcement.
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4.4 Cross-platform validation and fidelity

To rigorously validate the accuracy and platform-independence of the automatically generated model, two
separate simulation files, a MATPOWER .m file and an OpenDSS .dss script, were generated from the
same canonical model. Both were executed in their respective native environments (PYPOWER and dss-
python). The successful convergence of both solvers (3 iterations for MATPOWER, 3 for OpenDSS)
immediately indicated the robustness of the generated model. Results were further cross-validated against
the commercial solver DIgSILENT PowerFactory, showing excellent numerical agreement.

As detailed in Table 8, a direct comparison of the key simulation outputs reveals excellent numerical
agreement between the two open-source platforms and the commercial solver. The critical finding is that
the location and magnitude of the minimum medium-voltage are nearly identical, with all solvers
identifying Bus 158 as the weakest point with a voltage difference of less than 0.01%. Other key metrics,
such as total system losses and maximum line current, show less than 3% and 1.1% variance respectively,
which is well within expected tolerance for different solver algorithms.

The consistency is further confirmed by the voltage profile plots (Figures. 11 and 12), which show a virtually
identical voltage drop characteristic for both the medium-voltage and full medium-voltage/low-voltage
systems across both simulations. This successful cross-platform validation robustly demonstrates that the
automated framework accurately regenerates an electrically equivalent model whose solution is not
dependent on a single simulation engine, confirming the model's high fidelity.

Table 8 Comparison of key power flow results between the framework's generated MATPOWER, OpenDSS models and cross-
platform validation using a commercial solver

Metric MATPOWER OpenDSS DIgSILENT  Analysis
Maximum MV 1.0000 p.u. 0.9992 p.u. 1.01 Both confirm the source bus voltage is
Voltage (at Bus 1) (at Bus 1) correct.
Minimum MV 0.937 p.u. 0.9376 p.u. 0.936 p.u. Critical feeder voltage is nearly
Voltage (at Bus 158) (at Bus 158) identical; difference is < 0.1%.
Minimum LV 0.9271 p.u. 0.9284 p.u. 0.92 The difference is 0.0013 p.u. (0.13%).
Voltage (at Bus 252) (at Bus 252)
Total System 0.114 MW 0.1108 MW 4.05% < 3% difference, well within expected
Losses (4.05% of (3.98% of modelling variance.

generation) injection)

Total Power 2.814 MW 2.7855 MW 2.809 MW < 1% difference; consistent system-
Supplied (Generation) (Injected) wide power flow modelling.
Maximum Line 156.31 Amps 154.61 Amps < 1.1% difference on the most heavily
Current loaded line.
Solver 3 iterations 3 iterations 2 iterations Both solvers show rapid convergence,
Convergence indicating model robustness.
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5. Conclusions

This research successfully designed, implemented and validated a novel Python-based framework for power
system analysis. The framework automates the conversion of unstructured KMZ geospatial data into high-
fidelity, multi-platform mathematical models for computation. It employs a systematic pipeline that
integrates metadata-driven filtering, algorithmic topological healing, automated parameterization and
intuitive data visualization. This approach effectively bridges the critical semantic gap between static GIS
asset data and dynamic engineering simulation. The methodology's robustness and scalability were
demonstrated on a complex, real-world 11 kV, 158-bus distribution feeder. The framework autonomously
processed the raw data, healing 47 topological disconnections to generate a valid network model. The
model’s high fidelity was rigorously confirmed through cross-platform validation. Power flow simulations
converging successfully across MATPOWER/PYPOWER, OpenDSS and DIgSILENT, all showing
excellent numerical agreement. Crucially, the analysis provided a direct, data-driven diagnostic of the
network's health, identifying voltage behaviours under peak load conditions. This work demonstrates that
an automated framework can serve as both a modelling tool and a powerful diagnostic instrument. It
provides a feasible, low-cost and scalable pathway to enhance data-driven network diagnostics and
accelerate grid modernization by transforming previously unusable GIS data into actionable insights. The
key recommendation is for utilities to adopt such automated techniques to unlock the significant analytical
value hidden within their existing data archives.
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