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1. Introduction 

The global energy landscape is undergoing a profound transformation. This shift is driven by the urgent 

need for decarbonization and the increasing integration of Distributed Energy Resources (DERs) such as 

solar photovoltaics and electric vehicles (Matanov & Nankinsky, 2021). This evolution places 

unprecedented complexity on electrical distribution networks. These networks were not originally designed 

for bidirectional power flows or dynamic operational profiles. Consequently, advanced modelling, 

simulation and analysis has become paramount. Utilities must effectively plan grid reinforcements to ensure 
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reliability and maintain power quality (Javed et al., 2021; Mohd Azmi et al., 2022). 

A critical enabler for such analysis is the availability of accurate network models. However, a fundamental 

semantic gap persists between the Geographic Information Systems (GIS) and engineering software 

(Rahman et al., 2020). GIS formats like KML/KMZ are excellent for visualization but inherently lack the 

structured electrical metadata required for direct simulation (Geth et al., 2023; Tóth et al., 2020). This gap 

creates a significant operational bottleneck. The process of manually interpreting a KMZ file into analytical 

format is a well-documented challenge (Abeysinghe et al., 2021; Patel et al., 2025). This manual translation 

of visual GIS maps into solvable analytical models is slow, labour-intensive and prone to error (AL-Jumaili 

et al., 2023; Mukherjee et al., 2020). 

This challenge is particularly acute for distribution utilities in rapidly developing regions, where operational 

excellence is a central pillar of strategic planning. For instance, the Kenyan distribution utility aims to reduce 

system losses from a baseline of 23% to a target of 15.5% (Kenya Power, 2023). A core strategy to achieve 

this is energy accounting at granular feeder and transformer levels. However, performing such analysis is 

contingent upon having accurate simulation models. The manual conversion process from the extensive 

KMZ asset archives severely hinders these data-driven diagnostic efforts. 

Comprehensive standards like the Common Information Model (CIM) exist to promote interoperability, 

but their implementation remains complex and costly for many utilities (Anderson et al., 2022). Recent 

academic research has proposed various methods to automate model generation, yet limitations persist 

when dealing with the data realities of many utilities. Studies by Deka et al. (2024) and Subasic et al. (2022) 

focused on inferring network topology from operational measurements. These data-driven methods 

leverage time-series voltage correlations from smart meters to deduce connectivity. While effective for real-

time grid calibration, these methods utilize a data-driven approach that presupposes a fully deployed 

Advanced Metering Infrastructure (AMI). This is a capital-intensive resource often unavailable in 

developing regions. In contrast to these measurement-driven inference methods, our approach focuses on 

the structural analysis of the static, as-is geospatial asset data, which does not require real-time operational 

measurements. 

Conversely, Montano-Martinez et al. (2024) proposed using external datasets to correct and enhance 

existing GIS data. This includes using OpenStreetMap and municipal parcel data to correct asset coordinate 

errors. However, this approach relies on the accuracy of third-party data rather than the utility's own 

records.  Furthermore, existing open-source conversion tools, such as the QGIS2OpenDSS plugin, are 

typically designed for structured GIS formats like Shapefiles.  They fail when confronted with the 

unstructured, free-text metadata typical of KML/KMZ files used in the field (De-Jesús-Grullón et al., 

2024). 

These existing methods fail to address the unique challenge presented by KML/KMZ files. This format is 

inherently designed for visual presentation rather than engineering analysis. It is characterized by 

unstructured text descriptions and a lack of topological connectivity. The specific research gap is the lack 

of an integrated pipeline that can autonomously process these error-prone files. Such a pipeline must heal 

inherent topological disconnections and generate a fully parameterized model, without reliance on 

operational data streams or external structured databases. This paper presents a complementary approach. 

It introduces a framework that performs topological healing based on the geographical proximity of assets 

found within a single, self-contained KML/KMZ file.   

To clearly distinguish the contributions of this study from previous literature, this research introduces three 

specific innovations. First, it eliminates the dependency on dynamic sensor data by reconstructing network 

topology solely from static asset maps using Graph Theory.  This provides a viable solution for utilities 

that have not yet deployed AMI. Second, it automates metadata extraction through a novel regex engine 

designed to parse non-standardized HTML descriptions. This directly addresses the rigidity that causes 

previous conversion tools to fail on unstructured data. Finally, it bridges the technological gap for 
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developing nations by establishing a low-cost, open-source pathway to digital twins. This is specifically 

tailored for utilities that rely on KML/KMZ as their primary system of record. 

The framework's scalability and practical utility are demonstrated through its application to a large-scale, 

real-world utility feeder. In this case, it functioned as a powerful diagnostic tool for identifying operational 

issues like voltage violations. A rigorous validation process established the resulting model’s high fidelity 

and multi-platform compatibility. This showed successful convergence and excellent numerical agreement 

across open-source environments and commercial-grade simulators  (Khanh et al., 2025; Montenegro et 

al., 2022). 

 

2. Methodology 

The framework was implemented in Python (v3.9) environment. It leverages a suite of open-source 

libraries, including Pandas for data manipulation, LXML for KML parsing and NetworkX for graph-based 

topological analysis. The methodology follows a systematic, multi-stage pipeline designed to autonomously 

process raw, unstructured KMZ data into a fully parameterized, solvable power system model. This final 

model is then used to generate executable scripts for multiple industry-standard simulators including 

MATPOWER and OpenDSS, as illustrated in Figure 1. 

 
Figure 1 Conceptual workflow of the automated KMZ to Simulation framework. 
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2.1. Data ingestion and metadata-driven filtering 

The process begins by ingesting a standard utility-grade KMZ file, which is a zipped archive containing 

more KML documents. The framework unzips the archive in memory and parses the primary KML 

document using the LXML library. An XPath query is used to iterate through all placemark elements, which 

represent individual geospatial assets. For each element, descriptive metadata and geospatial are extracted 

from the HTML-formatted description tag using Regular Expressions (Regex).  

A critical challenge is distinguishing the core electrical network from thousands of non-essential elements, 

such as low voltage poles or purely visual markers. To solve this, a metadata-driven filtering heuristic is 

applied. It inspects attributes such as origin of the element and feeder of the element to ensure the asset 

belongs to the target circuit. Assets belonging to adjacent feeders are automatically discarded. The algorithm 

then classifies the remaining placemarks as valid electrical components based on the presence of specific 

technical keywords. 

For instance, a line segment is classified as a true medium voltage electrical branch only if its description 

contains a non-null attribute such as type of conductor, size of the conductor and length (km). The 

framework assumes that these valid line segments are explicitly represented in the KMZ as paths connecting 

two distinct asset placemarks (such as a line from pole A to pole B). The subsequent topological healing 

step (Section 2.2) is then applied to connect these defined segments or components where topological gaps 

exist. The length attribute is particularly critical, as it represents the physical span between individual poles 

in the raw data. Similarly, a point placemark is identified as a transformer only if it contains attributes such 

as substation rating (kVA), substation number and number of meters. Non-electrical assets like poles, stay 

wires or visual pointers typically lack these specific electrical attributes and are therefore discarded. This 

heuristic operates on a principle of positive identification: only elements containing explicit, recognized 

electrical keywords or attributes (such as 'kVA', 'conductor', 'feeder') are classified as valid assets. 

Consequently, non-essential elements such as lighting poles, stay wires, or visual markers, which inherently 

lack these specific identifiers, are automatically filtered out. This method proved highly effective, 

successfully isolating the core electrical network for subsequent processing. 

2.2. Topological healing of network connectivity gaps 

Raw, visually digitized GIS data is often topologically fragmented, containing gaps that would cause a 

simulation to fail. The framework implements an automated topological healing algorithm based on graph 

theory using the NetworkX library. It utilizes two-dimensional geospatial coordinates (latitude and 

longitude) for all calculations. While KML supports altitude, distribution feeders in the studied region 

generally follow the terrain gradient. Consequently, the difference between the 2D geodesic length and the 

3D slant length is negligible for steady-state power flow analysis. Therefore, the framework calculates the 

missing length across topological gaps using the 2D Haversine formula, which determines the shortest 

great-circle distance between two points on the Earth's surface.  

This healing process is implemented using a graph-theory algorithm that involves three key steps:  

Graph construction: An initial network graph, G=(V,E), is created from the filtered electrical assets. The 

vertices (𝑉) represent the start and end coordinates of these components, and the edges (𝐸) represent the 

explicit line segments themselves. 

Disconnected component identification: A standard connected components algorithm is run on 

graph 𝐺 to identify the set of all disconnected subgraphs, 𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑘}. 

Algorithmic Healing: To bridge the gaps between these islands, a weighted, complete meta-graph, 𝐺′ =

(𝑉′, 𝐸′), is constructed where each vertex 𝑣𝑖
′ ∈ 𝑉′ represents a component 𝐶𝑖 ∈ 𝐶. The weight 𝑤(𝑒𝑖𝑗

′ ) of 

an edge between any two vertices 𝑣𝑖
′ and 𝑣𝑗

′ is the minimum geographical distance between their respective 

components. This distance 𝑑 is calculated using the Haversine formula, which proceeds in three steps. 
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First, the component 𝑎, representing the square of half the chord length, is calculated using Equation (1). 

Next, the angular distance 𝑐 (in radians) is determined using Equation (2). Finally, the physical distance 𝑑 is 

computed using Equation (3). 

𝑎 = sin2 (
Δ𝜙

2
) + cos(𝜙1) cos(𝜙2) sin2 (

Δ𝜆

2
)      (1) 

𝑐 = 2 ⋅ 𝑎𝑡𝑎𝑛2(√𝑎, √1 − 𝑎)         (2) 

𝑑 =  𝑅 ⋅ 𝑐          (3) 

where: 

• 𝜙1, 𝜙2 are the latitudes of the two points. 

• Δ𝜙, Δ𝜆 are the differences in latitude and longitude, respectively. 

• 𝑎 is the square of half the chord length between the points. 

• 𝑐 is the angular distance in radians. 

• 𝑅 is the Earth's radius (approx. 6,371 km). 

A Minimum Spanning Tree (MST) is then computed for this meta-graph G′. The edges of the MST represent 

the most efficient set of virtual connections required to join all islands into a single, contiguous and 

topologically correct network with the shortest possible total length of added connections. This approach 

relies on the principle that distribution networks are designed to minimize conductor usage. Therefore, the 

MST algorithm inherently associates branching points with the nearest physical pole, validating connectivity 

without manual intervention. These connections are added back to the original graph G to form the final 

healed graph, Ghealed. 

2.3. Model consolidation and abstraction 

The detailed healed graph is consolidated into an electrically equivalent bus-branch model suitable for 

simulation. First, the algorithm identifies major nodes (𝑉major ⊂ 𝑉(𝐺healed)) which become the buses in the 

final model. This set consists of three distinct, programmatically identified categories: the source substation 

node, all transformer location nodes and all junction nodes. A junction is explicitly defined and identified 

by the algorithm as any node in the healed graph with a degree greater than two. This ensures that all 

branching points in the network topology are correctly preserved as buses in the final model. 

Next, for every pair of major nodes (𝑢, 𝑣) ∈ 𝑉major, Dijkstra's algorithm is used to find the shortest 

path, 𝑝(𝑢, 𝑣), in the healed graph. If this path contains no other major nodes, all its constituent segments 

are consolidated into a single equivalent branch. This consolidation process is strictly geometric; it traces 

the existing physical path defined by the intermediate pole coordinates in the KMZ file. No new electrical 

branches are inferred during this stage; the algorithm solely aggregates the series of physical segments 

between major nodes into a single equivalent electrical branch. The length of this new branch, 𝐿branch(𝑢,𝑣), 

is the sum of the lengths of all its individual segments, as given by Equation (4). 

𝐿branch(𝑢,𝑣) = ∑ 𝑙segment(𝑖,𝑗)(𝑖,𝑗)∈𝑝(𝑢,𝑣)         (4) 

Finally, an iterative routine merges any buses that are co-located or connected by a zero-length branch, 

resulting in a definitive set of buses and branches that form the canonical representation of the feeder. 

2.4. Canonical model parameterization and load allocation 

The abstracted bus-branch model is fully parameterized based on the system's nominal base values of power 

(𝑆base,MVA) and voltage (𝑉base,kV), from which the base impedance (Zbase) is derived using Equation (5): 
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𝑍base[Ω] =
(𝑉base,kV)

2

𝑆base,MVA
         (5) 

 

Load modelling: The active power (Pd,i) and reactive power (Qd,i) for each load bus are calculated from the 

associated transformer kVA rating (kVAi) and user-defined parameters. Two alternative scenarios are 

provided: 

i. Proportional peak load allocation: The active power is allocated proportionally to transformer 

ratings using Equation (6), where  𝑃peak,total is the total feeder load and 𝑁𝑡𝑥 is the number of 

transformers.  

ii. Uniform Utilization Factor (TUF) allocation: Alternatively, for a scenario based on a uniform 

TUF, active power is calculated using Equation (7).  

Reactive power is then determined by the system power factor (PF), as shown in Equation (8). 

𝑃𝑑,𝑖 = 𝑃peak,total × (
kVA𝑖

∑ kVA𝑘
𝑁𝑡𝑥
𝑘=1

)        (6) 

𝑃𝑑,𝑖 = (
kVA𝑖

1000
) × TUF × PF        (7) 

𝑄𝑑,𝑖 = 𝑃𝑑,𝑖 × tan(cos−1(PF))        (8) 

Line impedance parameterization: For each consolidated medium-voltage line of length Lkm , its total 

per-phase resistance (R′Ω/km) and reactance (X′Ω/km) are retrieved from a predefined conductor library. 

These physical values are then converted to their per-unit equivalents using Equation (9) for resistance and 

Equation (10) for reactance: 

𝑟p.u. =
𝑅Ω/km

′ ×𝐿km

𝑍base
         (9) 

𝑥p.u. =
𝑋Ω/km

′ ×𝐿km

𝑍base
         (10) 

Transformer impedance parameterization: Transformers are modelled as a branch connecting medium-

voltage bus to a newly created low-voltage bus. The impedance is derived from the transformer's kVA 

rating (𝑆tx,kml), percentage impedance (%𝑍kml), and X/R ratio. The impedance is first calculated in per-unit 

on the transformer's own base using Equation (11) and then converted to the system base using the 

standard base-change formula (12). This value is then resolved into its resistive (𝑟p.u.) and reactive (𝑥p.u.) 

components. 

𝑍p.u., tx-base =
%𝑍kml

100
         (11) 

𝑍p.u., system = 𝑍p.u., tx-base ×
𝑆base,MVA

𝑆tx,kml/1000
       (12) 

2.5. Simulation script generation 

The final step translates the fully parameterized canonical model into executable scripts for target 

simulation engines. The generated models are designed to be solved using a standard Newton-Raphson 

algorithm to find a solution for the complex bus voltages (𝑉) in the AC power flow Equations (13, 14), 

which express the balance of active power (𝑃𝑖) and reactive power (𝑄𝑖) at each bus 𝑖. 

𝑃𝑖 = ∑ |𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘 cos(δ𝑖 − δ𝑘) + 𝐵𝑖𝑘 sin(δ𝑖 − δ𝑘))𝑁
𝑘=1     (13) 
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𝑄𝑖 = ∑ |𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘 sin(δ𝑖 − δ𝑘) − 𝐵𝑖𝑘 cos(δ𝑖 − δ𝑘))𝑁
𝑘=1    (14) 

 

where: 

• N is the total number of buses. 

• |𝑉𝑖| and |𝑉𝑘| are the voltage magnitudes at bus i and bus k. 

• δ𝑖 and δ𝑘  are the voltage angles at bus i and bus k. 

• 𝐺𝑖𝑘 and 𝐵𝑖𝑘 are the real and imaginary parts of the ik-th element of the bus admittance matrix 

(Ybus). 

The framework generates executable scripts: 

For MATPOWER: The data is assembled into the standard bus, branch and gen NumPy matrices and 

packaged into a ppc dictionary structure, which can be solved by PYPOWER or exported as an executable 

.m file. 

For OpenDSS: The data is used to programmatically write a text-based .dss script, generating the necessary 

New Linecode, New Line, New Transformer and New Load commands required by the OpenDSS engine. 

This modular approach ensures that the core processing engine is independent of the final simulation 

software, allowing for flexible output to multiple platforms. 

 

3. Validation and Case Study Systems  

The methodology was validated and its practical utility demonstrated through a two-part approach. First, a 

bidirectional round-trip validation was performed on a standard test case to rigorously prove the integrity 

and fidelity of the core data conversion process. Second, the framework was applied to a large-scale, real-

world feeder to demonstrate its scalability and effectiveness as a diagnostic tool. 

3.1. Bidirectional framework validation: 4-bus proof-of-concept 

To establish the fundamental integrity of the data conversion process, a bidirectional or round-trip 

validation was performed using a standard 4-bus distribution network test case. The system, shown in 

Figure 2, represents a simplified radial feeder and includes a slack bus (Bus 1), two PQ load buses (Bus 2 

and 3), and a PV bus with an underlying load (Bus 4). The initial MATPOWER parameters for the system's 

buses, generators and branches are detailed in Tables 1-3. 

 

 
Figure 2 Single-line diagram of the 4-bus distribution network test case used for methodology validation 
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Table 1 Summary of initial bus parameters for the 4-bus test system. 

Bus ID Type Pd 

(kW) 

Qd (kVAR) Vm (p.u.) Va (°) Base Voltage (kV) Vmax Vmin 

1 3 (Slack Bus) 0 0 1.00 0 12.5 1.1 0.9 

2 1 (PQ Bus) 0.4 0.2 1.00 0 12.5 1.1 0.9 

3 1 (PQ Bus) 0.4 0.2 1.00 0 12.5 1.1 0.9 

4 2 (PV Bus) 0.4 0.2 1.00 0 12.5 1.1 0.9 

Table 1 Summary of initial generator parameters for the 4-bus test system 

Bus 

ID 

Pg 

(MW) 

Qg 

(MVAR) 

Qmax 

(MVAR) 

Qmin 

(MVAR) 

Vg 

(p.u.) 

mBase 

(MVA) 

Pmax 

(MW) 

Pmin 

(MW) 

1 0 0 10 -10 1.05 100 10 0 

4 0 0 10 -10 1.05 100 10 0 

 
Table 2 Summary of initial branch parameters for the 4-bus test system 

From Bus To Bus r (p.u.) x (p.u.) angle (°) status angmin (°) angmax (°) 

2 3 0.003 0.006 0 1 -360 360 

1 2 0.003 0.006 0 1 -360 360 

4 1 0.003 0.006 0 1 -360 360 

 

The validation followed three distinct phases: 

i. Phase I (Forward Conversion: MATPOWER to a Data-Rich KMZ): 

The goal of this phase was to simulate the creation of a utility-grade KMZ file from a known electrical 

model. First, the initial MATPOWER case data was enriched with descriptive asset metadata such as pole 

types, substation names, and assigned geographical coordinates which established a plausible physical 

layout. The framework then executed a parameter transformation algorithm, converting the per-unit 

electrical data into physical values. A key step was to define the visual representation for each asset, 

assigning specific shapes, colours and icons to each component. Finally, all of this information including 

asset names, coordinates, visual styles and the crucial physical and electrical metadata was programmatically 

written into a single KML file. This was achieved using the standardized metadata schema and packaged 

into a self-contained KMZ archive. This transformed the abstract MATPOWER model into a tangible, 

visually rich and machine-readable geospatial file. 

ii. Phase II (Reverse Engineering: KMZ back to MATPOWER): 

The generated KMZ file was used as the sole input for the reverse-engineering pipeline to test its data 

extraction and model reconstruction capabilities. The framework first parsed the KML structure and 

extracted all embedded metadata from the description tags for every placemark. A filtering algorithm was 

then applied to distinguish electrical from non-electrical components. Assets without specific electrical 

metadata (like intermediate poles) were correctly identified as purely structural and were not included in 

the final electrical model. The extracted data for the remaining electrical components (the source, loads, 

lines and transformer) was then used by the parameterization engine. This engine performed the inverse of 

Phase I, converting the physical values back to the system's per-unit base to reconstruct a new set of bus, 

generator and branch matrices from scratch, thereby recreating the analytical circuit. 

iii. Phase III (Fidelity Check and Visual Reconstruction): 

The final phase was a two-part verification of the process. First, a direct numerical comparison was 

performed between the matrices of the original MATPOWER model and the newly reconstructed model. 
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This fidelity check confirmed a lossless, high-precision round-trip conversion, with the reconstructed 

matrices being electrically equivalent to the originals. Second, the framework used the reconstructed model 

to automatically generate visual outputs, including a clean, untangled IEEE-style busbar diagram. The 

successful generation of this diagram, which correctly reflected the topology of the original 4-bus system, 

served as a visual validation of the framework's topological interpretation and model reconstruction 

capabilities. Together, these numerical and visual checks successfully proved the core concept of the 

methodology. 

3.2. Real-world application: an 11 kV distribution feeder case study 

To demonstrate the framework's scalability and practical utility on a real-world problem, the automated 

one-way conversion pipeline was applied to an operational 11 kV distribution feeder. The data was provided 

by a national Kenyan utility as a single, large KMZ file containing 3,765 distinct placemarks representing 

the feeder's assets, including lines, transformers, poles, and other visual markers. 

The framework was configured for a typical planning study scenario based on utility-provided data: a total 

feeder peak load of 2.7 MW at a power factor of 0.95. This complex, real-world dataset, with its inherent 

data quality issues such as inconsistent metadata and the topological gaps inherent in visually digitized data, 

served as the input for the automated conversion process.  The key statistics from the automated processing 

pipeline, which highlight the complexity of the data and the scale of the automated correction, are 

summarized in Table 4. 

Table 4 Key statistics from the automated model generation process for the 11 kV feeder 

Parameter Value 

Total Placemarks Processed 3,765 

Identified Transformers 94 

Identified Electrical Lines 101 

Detected Disconnected Components 48 

Algorithmically Healed Gaps 47 

Final Model Buses (medium-voltage) 158 

Final Model Branches (medium-voltage) 157 

 

The topological healing algorithm proved essential, identifying 48 disconnected network islands. It then 

created 47 virtual connections to form a single, contiguous graph algorithmically. Following this, the model 

consolidation and iterative merging process produced the final, topologically correct radial network model. 

This final model consists of 158 medium-voltage buses and 157 branches, which formed the basis for the 

power flow analysis. 

4. Results and Discussion  

The methodology was successfully executed in both the validation and real-world application stages, 

yielding verifiable and insightful results. The following sections detail the outcomes of the 4-bus proof-of-

concept, which confirmed the method's numerical fidelity, and the application to the large-scale utility 

feeder, which demonstrated its scalability and diagnostic power. 

4.1 Four-Bus validation results 

The round-trip conversion process for the 4-bus test case was successful. The forward conversion (Phase 

I) generated a data-rich KMZ file with all electrical and asset metadata correctly embedded, as illustrated 

by the geospatial visualization in Figure 3. The reverse-engineering process (Phase II) accurately parsed this 

KMZ file and reconstructed the bus, gen and branch matrices, confirming a high-fidelity, lossless 

conversion. 

In the final validation phase (Phase III), an AC power flow simulation on the reconstructed 4-bus model 
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converged successfully. The key steady-state results are summarized in Table 5 and system summary Table 

6. These results were numerically identical to four decimal places with a control simulation run on the 

original case file in MATLAB/MATPOWER, robustly validating the entire bidirectional process. 

 
Figure 3 Visual workflow of the 4-bus validation, from the original MATPOWER model (top-left) to geospatial visualization 

(bottom-left), and the automatically reconstructed analytical models (right) 

 
Table 5 Solved bus voltage magnitudes and angles from the power flow solution on the KML-reconstructed 4-bus model, 

confirming numerical fidelity 

Bus VM (pu) VA (deg) Pd (MW) Qd (MVAr) 

1 1.0500 0.0000 0.000 0.000 

2 1.0454 -0.1595 0.400 0.200 

3 1.0430 -0.2398 0.400 0.200 

4 1.0500 -0.8794 0.400 0.200 

 
Table 6 System Summary from the power flow solution on the KML-reconstructed 4-bus model 

Parameter MW MVAr 

Total Generation 1.2637 0.7262 

Total Load 1.2000 0.6000 

Total Losses 0.0637 0.1262 

 

4.2 Case study: automated model generation and visualization 

The application of the framework to the real-world 11 kV feeder demonstrated its effectiveness in handling 

large, unstructured and topologically flawed utility data. The automated pipeline successfully transformed 
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the raw geospatial data into a clean, solvable electrical model through a multi-stage process. 

The process began with the raw KMZ data, a dense geospatial file containing 3,765 placemarks. In the first 

step, the framework applied its metadata-driven filter to parse this data, successfully isolating the core 

electrical assets. This crucial filtering step correctly identified the source substation, 94 transformers and 

101 true medium-voltage line segments, while discarding 186 non-electrical marker lines and thousands of 

irrelevant pole nodes, resulting in the clean extracted network shown in Figure 4. 

 

 
Figure 4 Extracted network from the raw KMZ data with relevant electrical assets 

Analysis of this extracted network revealed that it was topologically fragmented into 48 disconnected 

components. The topological healing algorithm was then executed, algorithmically adding 47 virtual 

connections, shown as red dashed lines, to bridge these gaps. Subsequently, the model abstraction process 

consolidated the detailed, pole-by-pole graph into a simplified, electrically equivalent bus-branch model 

containing the final 158 medium-voltage buses and 157 branches. Figure 5 and Figure 6 show this final 

healed and abstracted geographical model, which is now topologically complete and ready for 

parameterization. 
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Figure 5 Healed geographical model, provides a topologically correct spatial view 
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Figure 6 Final abstracted geographical model, topologically complete and ready for parameterization 

From this final model, the framework automatically generated a clean, untangled IEEE-style single-line 

diagram (Figures 7 and 8). This schematic provides a purely logical representation of the network topology, 

complete with the final bus numbering, transformer kVA ratings and consolidated medium-voltage branch 

lengths, serving as the definitive, human-readable blueprint of the simulation model. 
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Figure 7 Clean, untangled IEEE-style single-line diagram with medium-voltage buses 

4.3 Case study: power flow analysis 

Following the successful generation of the 158-bus (medium-voltage) model, an AC power flow was 

executed to analyse the feeder's performance under the specified 2.7 MW peak load scenario. The 

simulation, run using the Newton-Raphson solver in PYPOWER, successfully converged in 3 iterations, a 

strong indicator of a well-posed and valid network model. The high-level performance metrics are 

summarized in Table 7. 

Table 7 High-level power flow analysis summary for the 11 kV feeder at 2.7 MW peak load 

Parameter Value 

Total Feeder Load 2.700 MW 

Total Generation Required 2.814 MW 

Total System Losses (MW) 0.114 MW 

System Losses (%) 4.05% 

Minimum medium-voltage Voltage 0.937 p.u. 

Bus with Minimum Voltage Bus 158 

Maximum Line Current 156.31 A 

 

The most significant finding of the analysis was the identification of considerable voltage drop along the 

feeder's electrically distant sections. As detailed in the voltage profile plot (Figure 9), the voltage drops 

steadily along the feeder with numerous buses operating close to the lower statutory limit of 0.90 p.u. The 

most dropped condition was observed at Bus 158, the furthest point from the source, registering a voltage 

of 0.937 p.u. This result demonstrates the framework's capability as a powerful diagnostic instrument for 

identifying specific network weaknesses that may require reinforcement to maintain power quality. 
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Figure 8 Untangled IEEE-style single-line diagram with medium-voltage buses, transformers and low-voltage buses 

 
Figure 9 Medium-voltage profile for the 11 kV distribution feeder. The plot shows the per-unit voltage at each of the 158 

medium-voltage buses, ordered logically from the source 
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The geographical distribution of these results is visualized in the heat map shown in Figure 10. This map 

clearly illustrates the spatial nature of the power quality issue, with healthy voltages (green) near the source 

substation and progressive voltage drops (yellow) along the feeder's extremities. This result demonstrates 

the framework's capability not just as a modelling tool, but as a powerful diagnostic instrument for 

identifying specific geographical areas with network weaknesses that may require reinforcement. 

 

 

 
Figure 10 Geographical visualization of power flow results. Bus colors represent voltage and line color and thickness represent 

current loading 
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4.4 Cross-platform validation and fidelity 

To rigorously validate the accuracy and platform-independence of the automatically generated model, two 

separate simulation files, a MATPOWER .m file and an OpenDSS .dss script, were generated from the 

same canonical model. Both were executed in their respective native environments (PYPOWER and dss-

python). The successful convergence of both solvers (3 iterations for MATPOWER, 3 for OpenDSS) 

immediately indicated the robustness of the generated model. Results were further cross-validated against 

the commercial solver DIgSILENT PowerFactory, showing excellent numerical agreement. 

As detailed in Table 8, a direct comparison of the key simulation outputs reveals excellent numerical 

agreement between the two open-source platforms and the commercial solver. The critical finding is that 

the location and magnitude of the minimum medium-voltage are nearly identical, with all solvers 

identifying Bus 158 as the weakest point with a voltage difference of less than 0.01%. Other key metrics, 

such as total system losses and maximum line current, show less than 3% and 1.1% variance respectively, 

which is well within expected tolerance for different solver algorithms. 

The consistency is further confirmed by the voltage profile plots (Figures. 11 and 12), which show a virtually 

identical voltage drop characteristic for both the medium-voltage and full medium-voltage/low-voltage 

systems across both simulations. This successful cross-platform validation robustly demonstrates that the 

automated framework accurately regenerates an electrically equivalent model whose solution is not 

dependent on a single simulation engine, confirming the model's high fidelity. 

 

Table 8 Comparison of key power flow results between the framework's generated MATPOWER, OpenDSS models and cross-

platform validation using a commercial solver 

Metric MATPOWER OpenDSS  DIgSILENT Analysis 

Maximum MV 

Voltage 

1.0000 p.u.  

 (at Bus 1) 

0.9992 p.u.  

 (at Bus 1) 

1.01 Both confirm the source bus voltage is 

correct. 

Minimum MV 

Voltage 

0.937 p.u.  

(at Bus 158) 

0.9376 p.u.  

 (at Bus 158) 

0.936 p.u. Critical feeder voltage is nearly 

identical; difference is < 0.1%. 

Minimum LV 

Voltage 

0.9271 p.u.  

(at Bus 252) 

0.9284 p.u.  

(at Bus 252) 

0.92 The difference is 0.0013 p.u. (0.13%). 

Total System 

Losses 

0.114 MW 

(4.05% of      

generation) 

0.1108 MW         

(3.98% of               

injection) 

4.05% < 3% difference, well within expected 

modelling variance. 

Total Power 

Supplied 

2.814 MW 

(Generation) 

2.7855 MW 

(Injected) 

2.809 MW < 1% difference; consistent system-

wide power flow modelling. 

Maximum Line 

Current 

156.31 Amps 154.61 Amps  < 1.1% difference on the most heavily 

loaded line. 

Solver 

Convergence 

3 iterations 3 iterations 2 iterations Both solvers show rapid convergence, 

indicating model robustness. 
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Figure 11 Medium-voltage and low-voltage voltage profiles from MATPOWER simulations 

 
Figure 12 Medium-voltage and low-voltage profiles from OpenDSS simulations 



Electrical Engineering and Energy | (2026) 5:1 

 
Okemo et al. (2026), Electr. Eng. Energy                                                                                                                                                                    55 

 

5. Conclusions 
This research successfully designed, implemented and validated a novel Python-based framework for power 

system analysis. The framework automates the conversion of unstructured KMZ geospatial data into high-

fidelity, multi-platform mathematical models for computation. It employs a systematic pipeline that 

integrates metadata-driven filtering, algorithmic topological healing, automated parameterization and 

intuitive data visualization. This approach effectively bridges the critical semantic gap between static GIS 

asset data and dynamic engineering simulation. The methodology's robustness and scalability were 

demonstrated on a complex, real-world 11 kV, 158-bus distribution feeder. The framework autonomously 

processed the raw data, healing 47 topological disconnections to generate a valid network model. The 

model’s high fidelity was rigorously confirmed through cross-platform validation. Power flow simulations 

converging successfully across MATPOWER/PYPOWER, OpenDSS and DIgSILENT, all showing 

excellent numerical agreement. Crucially, the analysis provided a direct, data-driven diagnostic of the 

network's health, identifying voltage behaviours under peak load conditions. This work demonstrates that 

an automated framework can serve as both a modelling tool and a powerful diagnostic instrument. It 

provides a feasible, low-cost and scalable pathway to enhance data-driven network diagnostics and 

accelerate grid modernization by transforming previously unusable GIS data into actionable insights. The 

key recommendation is for utilities to adopt such automated techniques to unlock the significant analytical 

value hidden within their existing data archives. 
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