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Abstract: Distribution networks are increasingly strained by peak load demands
and voltage regulation problems. This paper benchmarks Particle Swarm
Optimization, Boda-Boda Optimization, and Adaptive Boda-Boda Optimization
Algorithm with Fuzzy Logic (ABBOA-Fuzzy) to size and site Battery Energy
Storage System (BESS) as a Non-Wires Alternative for rural 11kV feeder support.
Baseline analysis of the feeder indicated a peak load of 99.6%, and a voltage drop
to 0.936 p.u. The optimization process demonstrated the supetiority of the
ABBOA-Fuzzy algorithm, which converged faster. The optimized solution guided
the selection of a commercially available 400kW/1200kWh BESS which reduced
peak demand by 15.5% and raised the minimum voltage to 0.952 p.u. A 15-year
techno-economic analysis using the System Advisor Model, accounting for battery
degradation confirmed the economic viability with a Net Present Value of $43,643
and an Internal Rate of Return of 15.54%. The study recommends this framework
for utility BESS planning.

Keywords Battery Energy Storage System (BESS), Net Present Value (NPV),
Non-Wires Alternative (NWA), System Advisor Model (SAM)

1. Introduction

The constant growth in electricity demand, with the increasing penetration of distributed sources, is causing

severe stresses on the existing electrical distribution systems. This problem is severe in rural areas, where

long radial distribution networks are subjected to two critical issues during peak load periods: end-of-line

consumers expetience poor power quality due to significant voltage drops, while substation transformers
become overloaded (Loji et al., 2023; Pjevalica et al., 2023). Traditionally, utilities have responded to these
challenges by investing in expensive physical infrastructure upgrades, such as installation of larger

transformers and reinforcement of power lines (Zarei et al., 2024). This approach is inefficient because the

newly installed equipment is required for only a few hours each day and therefore remains underutilized

for much of the time (Nourollahi et al.,, 2022). To overcome these limitations, Battery Energy Storage
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Systems (BESS) are emerging as flexible Non-Wires Alternative (NWA), offering a focused solution for
managing peak loads, improving voltage profiles, and therefore modernizing overall power grid stability
(Loji et al.,, 2023).

Various BESS grid applications have been explored in the literature, including frequency regulation (Parajuli
et al., 2024), peak shaving (Arias et al., 2021), power quality enhancement (Prakash et al., 2022), and energy
arbitrage. Among them, peak shaving and voltage support have drawn much interest because they could
delay costly infrastructure investments (Galea et al., 2025). The successful deployment for these targeted
services depends on the solution of the fundamental challenge relating to optimum placement and sizing
of BESS. To address this challenge, significant literature has applied metaheuristic algorithms such as
Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) for obtaining an optimum BESS
configuration by minimizing multi-objective functions involving network losses, voltage deviations, and
lifecycle costs (Boonluk et al., 2021; Mat Isa et al., 2023; Pompern et al., 2023). Newer metaheuristic
algorithms are being developed to perform better than established methods. This study will employ Boda-
Boda Optimization Algorithm (BBOA) and an enhanced Adaptive Boda-Boda Optimization Algorithm
with Fuzzy logic (ABBOA-Fuzzy) in benchmarking the solution from PSO.

The interdependence between siting and sizing complicates the optimization problem: Optimal power and
energy capacity are functions of the location of the BESS, while the optimal location is a function of its
capacity, and co-optimization is thus necessary (Mat Isa et al, 2023). The degradation of batteries
introduces one of the most important long-term constraints since it affects the operational reliability of the
system and the financial return directly. These performance fades come from two main mechanisms: cycle
degradation, which is the wear from charge/discharge operations, and calendar degradation, which is the
natural aging of the battery over time (P et al., 2025; Rufino Junior et al., 2024). For example, the aggressive
cycles needed for peak shaving accelerate cycle degradation predominantly, which greatly undermines the
economic performance of the project in the long run (Apribowo et al., 2022).

The main barrier to achieving a financially viable investment case for BESS, particulatly in developing
countries, is their high capital cost. This cost is determined by both the energy capacity of the battery cells,
usually denominated in dollars per kilowatt-hour ($/kWh), and the power capacity of the Power Conversion
System (PCS), denominated in dollars per kilowatt ($/kW) (Zhao et al., 2023). This large upfront
investment creates a significant financial risk whereby an oversized system may not achieve a positive return
on investment, while an undersized system fails to deliver the grid benefits required to justify its cost (Zhao
et al., 2023). For this reason, optimization of BESS configuration is not an academic exercise but a
commercial necessity needed to ensure that the deployed asset is cost-effective and provides a viable return
(Zhao et al., 2023).

A review of existing methodologies reveals a clear division in the approaches to BESS sizing and siting.
While theoretical optimization studies apply metaheuristic algorithms in order to effectively search the
solution space, they often result in commercially unavailable BESS capacities. Conversely, simulation-based
assessments of standard equipment sizes lack a guaranteed path to an optimal solution. Table 1 provides a
comparative summary of these approaches and visually highlights the resulting gap in the literature. Few
studies offer a complete framework that bridges theoretical optimization with practical validation using
industry standard simulation tools. The literature specifically lacks a methodology that concludes with a
bankable techno-economic analysis one that incorporates lifecycle costs (Capital Expenses (CAPEX),
Operational Expenses (OPEX), Future equipment replacement cost, taxes and insurance) and realistic
battery degradation.
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Table 1 Comparative Analysis of Recent BESS Optimization Studies
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*opt.-Optimization, MILP- Mixed-Integer Linear Programming, Op.- Operational, min.- Minimization,
max.- Maximization, Calc.- Calculation

This paper addresses this gap by presenting and applying a two-stage hybrid methodology on a real-world
case study of the 11kV feeder in Kenya. The novel contributions of this study are:

e Benchmarking PSO algorithm against two novel, locally-inspired metaheuristics BBOA and
ABBOA-Fuzzy to provide a cross-validated solution for optimal BESS sizing and siting.
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e The use of simulation-based performance verification, where the optimal theoretical solution is used
to select a commercially available BESS whose technical performance is then confirmed in
DIgSILENT PowerFactory.

e The development of a bankable techno-economic case that confirms financial viability by integrating
a comprehensive lifecycle cost analysis with a realistic battery degradation model in NREL’S SAM.

Section 2 of the paper details the complete methodology, from system modeling and the formulation of
the optimization algorithms to the techno-economic framework. Section 3 then presents and discusses the
results, covering the baseline analysis, the comparative optimization, and the final technical and financial
validation. The paper concludes in Section 4 with the conclusions and recommendations derived from the
study's findings.

2. Methodology

Figure 1 presents the flowchart of the whole hybrid methodology, from initial system modeling to the final
techno-economic validation. The suggested framework includes three major steps: system modeling and
baseline analysis, theoretical optimization by PSO, BBOA and ABBOA-Fuzzy, and simulation-based
validation.

2.1 Case Study

An 11 kV feeder in Kenya was selected for this study, where all network topology data, including overhead
line parameters, transformer ratings, and historical load profiles, were provided by the local utility. The
feeder has a long, radial topology, as depicted in Figure 2 of approximately 69 kilometers, with a mix of
residential, small commercial, and agricultural loads. This composition of loads gives a pronounced daily
load profile, normally peaking around 18:00 to 21:00 hours. A complete network was modeled in
DIgSILENT PowerFactory to represent real-world operational conditions for the feeder.

Model Feeder & Perform Baseline Analysis
(Input Data & Problem Definition)

PSO & ABBOA-Fuzzly Optimization

Execute Co-simulation Iteration Ie
Algorithm Converged?

Yes

NO

Select Nearest Commercial BESS
(from Theoretical Optimum)

I

Perform Technical & Techno-Economic Validation
(DIgSILENT & SAM)

End: Bankable Invesiment Case

Figure 1 Flowchart of the proposed two-stage methodology
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Figure 2 Single-line diagram of the 11kV distribution feeder
2.2 Baseline Analysis

Baseline analysis was conducted to quantify the performance of the feeder without a BESS. A quasi-
dynamic load flow simulation was executed in DIgSILENT PowerFactory over a 24-hour period using the
typical daily load profile of the feeder. This established the existing operational condition and determined
the primary deficiencies of the system. Four key performance indicators were analyzed: Peak load,
transformer loading, voltage profile and system losses. The baseline analysis confirmed that the feeder
operates under significant stress, establishing a clear need for a grid support solution and providing the
performance benchmarks against which the subsequent optimization would be evaluated.

2.3 Optimal Sizing and Siting of BESS Using Metaheuristic Algorithms

Following the base case analysis, the first step in the hybrid approach was the application of a metaheuristic
optimization algorithms to identify the optimal size and location for BESS. This step aims to provide an
unbiased benchmark to guide a subsequent practical choice of the system. Three different algorithms, PSO,
BBOA and advanced ABBOA-Fuzzy, were used to arrive at an optimized solution. PSO has been chosen
here because it has already proven effective in finding global optima of complex nonlinear problems of
power systems, as demonstrated in (Boonluk et al., 2021; Pompern et al., 2023). Compared to other
metaheuristic methods, such as Genetic Algorithms, PSO is more frequently selected for such applications
because of its high computational efficiency (Khunkitti et al., 2022), fast convergence rate (Pompern et al.,
2023), and easier implementation, all of which are crucial advantages when the evaluation of the fitness
function involves complex power system simulations. The solution obtained with PSO was further
benchmarked using BBOA and ABBOA-Fuzzy algorithms.

2.3.1 Objective Function

The metaheuristic algorithms were implemented within a Python-based environment to co-optimize BESS
power capacity (Psess), energy capacity (Eggss), and bus location. The optimization was formulated to
minimize BESS CAPEX with two important operational constraints derived from baseline analysis: a
reduction of at least 15% in peak demand of the feeder and the correction of the voltage drop identified.
Therefore, the optimization was designed in order to impose a defined operational voltage target so that
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the minimum bus voltage lies above 0.94 p.u., providing a clear safety margin above the statutory lower
limit at 0.90 p.u. Candidate solutions that failed to meet these constraints were set to a high penalty value
within the algorithm to effectively guide the search towards a set of technically feasible and cost-effective
configurations, a standard technique for handling constraints in metaheuristic optimization (Nassef et al.,
2023). The complete objective function to be minimized is formulated as follows:

F(X) = Csys(x) + Wp - max (0' Ppeak (x) - Ptarget) +w, - max (0: Viimit — Vmin(x)) (1)

Where F(X) represents the fitness value of the candidate solution X; Cgys(X) is the system Capital
Expenditure (CAPEX) calculated as (Cp X PBESS) + (Ce X Eggss), with Cp and Ce representing the unit
costs in $/kW and $/kWh, respectively. Ppea (X) denotes the resulting feeder peak demand with the BESS
in operation, while Peyrget is the target peak demand defined as 0.85 X Ppage (Where Ppgge is the baseline

peak load). Vipin (X) is the minimum bus voltage recorded during the simulation, and V¢ is the operational
voltage target set at 0.94 p.u.

The penalty coefficients wy, and wy, were empirically set to 10° and 108, respectively. These magnitudes
were chosen to be significantly larger than the typical CAPEX values, ensuring that any solution violating
the voltage constraint or failing to meet the peak reduction target is assigned a high fitness score. This
effectively excludes technically infeasible solutions from the search space during the optimization process.
A sensitivity analysis was performed to validate these penalty magnitudes. When the penalty factors were set
to lower values (10%), the optimization converged to a trivial solution of 0 kW, indicating that the penalty
cost was insufficient to outweigh the CAPEX savings of omitting the BESS. However, for penalty factors
of 10° and above, the algorithm consistently converged to the feasible global optimum (392.6 kW)).

2.3.2 Fitness Evaluation Procedure

Evaluation of the objective function F(x) required a power system model which could run rapid and
repetitive simulations at every candidate solution that the metaheuristic algorithms would propose. For this
purpose, a computationally efficient power flow model of the 11kV feeder was developed in Python. The
Backward-Forward Sweep (BES) algorithm was selected as a power flow solver since it has been proven to
be fast and converges definitely in a radial topology network (Fang et al., 2023). This computational
efficiency, which can give results with minimum resources, as stated by (Petridis et al., 2021), was essential
for this study's optimization process. The Python-based BES solver was benchmarked against DIgSILENT
PowerFactory to verify its accuracy. The BES model calculated a minimum voltage of 0.9360 p.u., matching
the DIgSILENT result of 0.936 p.u. Additionally, the calculated active power losses (0.105 MW) were
nearly identical to the DIgSILENT benchmark (0.10 MW). This confirms that the BFS engine provides the
necessary accuracy for the optimization loop while remaining computationally efficient.

Figure 3 presents a flowchart of this evaluation process. This process is initiated when a metaheuristic
algorithm (PSO, BBOA and ABBOA-Fuzzy) proposes a candidate solution. This configuration is then
implemented in the Python model, and a 24-hour load flow simulation is executed to determine the feeder
performance. The critical outputs of the simulation i.e., the new peak demand, P_peak (x) and minimum
bus voltage V_min (x) are utilized in Equation (1) to compute the fitness value. This iterative co-simulation
approach with the BFS algorithm playing the role of the embedded load flow engine has been determined
as the better method of solving these types of optimization problems (Altaf et al., 2024).
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Start Evaluation

Select Next Candidate Solution

Execute 24-hr BFS Load Flow Simulation

l NO

Extract Performance Meftrics
[Ppeak, WVmin]

'

Calculate Fitness F(x) using Eq. (1)
& Return Score to PSO

Last Candidate in Population?

Yes

End Evaluation

Figure 3 The fitness evaluation process for a single candidate solution

2.3.3 Boda-Boda Optimization Algorithm (BBOA)

The BBOA is a metaheuristic that takes inspiration from adaptive navigation strategies of Kenyan boda-
boda (motorcycle taxi) riders. It extends a basic PSO structure with two new, specialized probabilistic
operators to enhance a better balance between exploration and exploitation. These operators model real-
wortld decision-making by the riders:

i Exploration (Shortent): The "exploration" factor, specified by a fixed probability «, simulates the
rider's decision to take a risky but potentially faster shortcut. This can be achieved by adding a
random vector to the agent's velocity.

il. Exploitation (Traffic): An "exploitation" factor regulated by a fixed probability 3 simulates
cautious reaction to traffic congestion by slowing down or braking. This is modeled by reducing
the agent's velocity.

The velocity and position of each agent are updated according to the following equations:

Vi(t + 1) =wX vi(t) + €L X1y (pbest(i) - xi(t)) + C X1y (gbest — X (t)) + v{shortcut} - U{traffic} (2>
x(t+ 1) = x() +v(t+1) 3

Where vj is the agent velocity, Xj is the agent position, w is the inertia weight, ¢; and ¢, are the cognitive
and social coefficients, and Ppest and Gpest are the personal and global best positions. The term Vighortcut}
is a random vector applied with probability «, and V¢rqfric) represents a velocity reduction applied with
probability .

The main feature of the BBOA is that the parameters « and 3 are fixed constants defined at the initialization
of the optimization. This offers a consistent but rigid search strategy because the trade-off between
exploration and exploitation does not adapt to the advancement of the agent during the search.
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2.3.4 Adaptive Boda-Boda Optimization Algorithm with Fuzzy Logic (ABBOA-Fuzzy)

The ABBOA-Fuzzy overcomes the limitation of fixed parameters in the BBOA. The adaptive algorithm
elevates the model from fixed probabilistic rules to include a fuzzy logic controller that can simulate the
context-aware judgment of a rider. Exploration factor o and exploitation factor B are instead varied
dynamically within ABBOA-Fuzzy, rather than using fixed values.

The core of this enhancement is a fuzzy inference system that modulates o and  depending on a single
intuitive input: the normalized distance of an agent X; from the current global best solution, 8pest- The
fuzzy inference system utilizes Triangular Membership Functions (trimf) for both the input variable
(Normalized Distance, D) and the output variables (Exploration a, Exploitation ). The input D represents
the Euclidean distance of an agent from the global best solution, normalized to the range [0’ 1]. The
membership functions are defined with the following ranges detrived from the algorithm's tuning:
"Near/Low" [0.0-0.0° 0.3], "Medium" [0.2:0.5/0.8], and "Far/High" [0.7-1.0-1.0]. The Mamdani
inference method is employed with a centroid defuzzification strategy. The fuzzy rule base, presented in
Table 2, was designed to dynamically adjust the search behavior based on the agent's proximity to the

optimum.

Table 2 Fuzzy Rule Base for ABBOA-Fuzzy

Rule IF THEN THEN

No. Normalized Distance (@) (Exploration) (f8) (Exploitation)
1 Far High Low
2 Medium Medium Medium
3 Near Low High

This adaptive mechanism enables the algorithm to gradually shift from a globally exploratory search in the
early stages to a locally exploitative search toward the later iterations. The position-velocity update equation
for ABBOA-Fuzzy remains similar to that for BBOA; however, in the update mechanism, dynamically
adjusted values of o« and B from the fuzzy controller at every iteration are utilized. This intelligent adaptive
strategy enhances the capability of the algorithm for exploring complex nonlinear search spaces while
preventing fast convergence toward any local optimum, thereby giving a major advantage over the methods
with fixed parameters of search. The specific hyperparameters configured for each algorithm are detailed
in Table 3.

2.4 Practical BESS selection and Techno-Economic Analysis

The output of the algorithms is a precise, mathematically optimal solution that serves as an unbiased
benchmark. This theoretical optimum solution may not correspond to a standard commercially available
BESS module. Therefore, the framework transitions from theoretical optimization to practical validation.
This process involves identifying the converged theoretical power and energy capacities from the
algorithms, then choosing the nearest equivalent, commercially available BESS. This selected practical
system is then modelled in DigSILENT PowetFactory and NREL's SAM for technical and economic
assessment.

To investigate the long-term financial viability of the chosen practical BESS configuration, a lifecycle
analysis was executed using the NREL's SAM. SAM was adopted because it is an industry-standard,
advanced model capable of projecting project cash flows in detail over several years. The analysis was set
up to establish the project's NPV over an operational lifetime of 15 yeats.
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Table 3 Optimization Algorithm Hyperparameters

Category Parameter Symbol Value Description
General Settings Population Size N 20 Number of search agents
Maximum Tax 30 Stopping criterion
Iterations
PSO Parameters Inertia Weight w 0.5 Controls exploration—
exploitation balance
Cognitive 1 1.5 Influence of personal best
Coefficient position
Social Coefficient Cy 1.5 Influence of global best
position
BBOA / ABBOA Inertia Weight w 0.7 Velocity retention factor
Parameters
Acceleration C1,Co 1.5 Acceleration factors
Coeftficients
Fuzzy Controller Input Variable Normalized [0:1] Distance to global best
(ABBOA) Distance (Gbest)
Output Variables a, B [0:1] Adaptive probability
parameters

NPV was the preferred primary financial metric because, as opposed to the simple payback, it considered
the time value of money by discounting all future revenues and costs to their present-day value, therefore
offering a much better indication of overall profitability (Mohamed et al., 2022).

A key aspect of this modeling was the use of a realistic battery degradation model in SAM. This ensures
that the financial projections accurately account for the battery's performance fade and the associated
replacement costs, as simplistic degradation approaches can lead to unreliable conclusions (Shamarova et
al., 2022). The model simulates the decline in capacity and efficiency due to both cycle degradation i.e.,
charge/discharge operations and calendar degradation i.e., aging over time (Collath et al., 2023). The
detailed financial assumptions that form the basis of this techno-economic model, including capital costs,
operational costs, and the calculations for the total upgrade deferral benefit, are provided in Table 4 and
Table 5.

The techno-economic parameters were selected based on standard industry benchmarks and regional
economic conditions. The nominal discount rate of 10% alighs with recent optimization studies for
renewable energy systems in Kenya, such as the off-grid hybrid assessments by (Adem & Otara, 2023). The
battery cost projections and performance metrics, including variable operations and maintenance (O&M)
costs, were derived from the NREL Annual Technology Baseline (Cole & Karmakar, 2023). Furthermore,
the inclusion of a realistic 1.5% annual degradation rate and an 80% Depth of Discharge (DoD) limit
address the critical importance of accurate battery modeling in techno-economic assessments, as simplified
assumptions can significantly bias lifecycle costs (Shabani et al., 2022).

2.5 BESS Dispatch Strategy and Degradation Modelling

The technical and financial performance of the BESS is entirely dependent on its operational or "dispatch”
strategy. This strategy dictates when the BESS charges and discharges to meet its primary objectives of
peak shaving and voltage support. As these operational decisions directly govern the rate of battery
degradation and, consequently, the project's profitability, they must be realistically modeled. The following
subsections detail the dispatch logic and the degradation model used in this analysis.
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Table 4 Key assumptions for the techno-economic analysis

Parameter Category Parameter Value Description
Analysis period 15 years BESS project lifetime
Nominal discount rate 10%/year The minimum
Project and Financial acceptable rate of return
. Inflation rate 2.5%/year Standard assumption for
assumptions .
future cost increases
Income tax rate 30%/year Based on Kenyan
corporate tax
Battery type Lithium ion
Rated Power (AC) 400kW Deliverable power to
the grid.
Usable Capacity (AC) 1200kWh The total Energy the
BESS can deliver
Battery System Round Trip-Efficiency 85%
Specifications Annual degradation 1.5%/year Model’s the battery’s

System Availability

98%/year

loss of capacity over
time
2% accounts for annual
downtime for
maintenance

Capital costs (CAPEX)

Direct Costs

All-in Installed Cost

$252/kWh
$383/kW

$637,825

Total installed project
cost, including all
hardware, engineering,
and construction costs
(Cole & Karmakar,
2023)

Annual O&M basis

1.5% of CAPEX

Standard industry
estimates for O&M

Operating costs O&M (year 1) $9,637 (Lazard, 2023)
(OPEX) O&M Escalating rate 2%/yeat Accounts for inflation
of operating costs
Inverter replacement $0.15/W (DC) Cost to replace the
cost inverter in year 12
Primary Financial Total upgrade deferral $1,327,200 Core benefit.

Benefits

2.5.1 BESS Dispatch Strategy

A peak shaving strategy based on time was developed to control the operation of the BESS using SAM's
Manual dispatch controller. This controller follows a user-defined 24-hour schedule that ensures holding
the battery's capacity for the peak periods. Figure 4 presents the resulting operational profile, which follows
a single deep charge/discharge cycle per day, timed to coincide with the feeder's load pattern. As illustrated,
the BESS charges from the grid at its full 400 kW rated power during early morning off-peak hours, remains
idle all day, and then discharges to feed power into the network during the evening peak, commencing at
18:00 hours. This simple dispatch strategy ensures that the energy stored in the BESS is used to maximum
effect in addressing the evening peak constraint directly identified in the baseline analysis.
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Table 5 Supporting Calculations for the Total Deferred Upgrade Cost

Parameter Value Source
Feeder length requiring upgrade ~ 10.35 km Assumed 15% of the total 69 km
feeder length.
Distribution network $100,000 / km Based on regional utility costs
construction cost (Ondigo & Wekesa, 2024).
Subtotal (Line Reinforcement) $1,035,000 Calculated as 10.35km X
$100,000/km
Required transformer capacity 5 MVA From existing 3 MVA to a
upgrade proposed 5 MVA.
Transformer unit cost $30 / kKVA Estimated from manufacturer
data, Taishan transformers, 2024
Subtotal (Transformer Upgrade) ~ $150,000 Calculated as 5MVA X
1000kVA x $30/kVA
Network construction and $1,185,000 $1,035,000+$150,000
transformer cost
Ancillary costs (installation, etc.) ~ 12% of 1,185,000 Estimated as a small percentage
$142,200 for labor and materials.
Total Deferred Upgrade Cost $1,327,200 Sum of all component costs.
400
‘— BESS Power Dispatch ‘
300 - Peak Shaving Discharge
— 2004
&
E’ 100 A
£
g
S 0
3
z
8‘ —-100
=
3
£,
n —200
Grid Charging
=300
-400 T T T T T T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20 22 24

Time [Hours]

Figure 4 Daily BESS dispatch profile, showing grid charging (negative power) and peak shaving discharge (positive power)
2.5.2 Degradation Modelling in SAM

The SAM analysis included a realistic battery degradation model to obtain an accurate financial forecast.
This is important since degradation affects both the battery's petformance and its total cost over the
project's life. The model includes the two major causes of battery wear, which are cycling degradation due
to charge and discharge cycles, and calendar degradation due to normal aging over time. A critical
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determinant of how quickly a battery wears out is its DoD in each cycle. Deeper cycles are harder on the
battery, which makes it lose capacity faster and shortens its life. Figure 5 from NREL's SAM illustrates this
relationship by comparing the health of a battery over its lifetime for deep 100% DoD cycles versus
shallower 80% DoD cycles. As can be seen from Figure 5, limiting the discharge to 80% slows down the
wear and extends the time when the battery would need to be replaced considerably. In order to take
advantage of this, a maximum 80% DoD limit was imposed in the simulation for this study. This strategy
helps to extend the life of the battery, reduce future replacement costs, and will be one of the important
strategies to make the project economically successful.

— 100% DoD
—— 80% DoD (This Study)

Effective capacity [%]

0 2000 4000 6000 8000 10000
Cycle number

Figure 5 Impact of Depth of Discharge (DoD) on BESS Cycle Life

3. Results and Discussion

The proposed methodology was applied to an 11kV feeder in Kenya, Figure 2 to determine a technically
effective and financially viable BESS solution. The findings are presented in the order that follows from
the methodological framework: first, the outcomes of the baseline analysis are detailed to establish initial
performance benchmarks for the feeder. This is followed by the results of the theoretical optimization as
conducted by the metaheuristic algorithms. The section concludes with the validated technical performance
and techno-economic results from NREL's SAM for the selected practical BESS configuration.

3.1 Baseline Analysis Results

This baseline analysis, conducted in the absence of any BESS, established that the feeder always operates
under significant operational stress, particulatly during peak periods. A 24-hour quasi-dynamic simulation
performed in DIgSILENT PowerFactory quantified the key feeder performance benchmarks, and the
resultant daily load profile is presented in Figure 6. The outcome of the simulation showed a system peak
load of 2.809 MW, which loaded the main 3 MVA substation transformer to 99.6% of its rated capacity.
Simultaneously, the feeder also suffered a voltage drop, with the minimum voltage at the electrically furthest
bus falling to 0.936 p.u. The energy losses were estimated to be 989 kWh for the period of 24 hours.
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Figure 6 Baseline daily load profile for the 11kV feeder without a BESS

These findings build a quantitative profile of a feeder operating at full technical capacity. The high
transformer loading threatens asset health and reliability, leaving no room for future load growth. Similarly,
although the minimum voltage of 0.936 p.u. is technically in compliance with the statutory 0.90 p.u. limit,
this condition represents significant voltage stress. Therefore, these baseline values provide the critical
performance benchmarks for the subsequent optimization. The major technical objectives for the BESS
are accordingly to reduce the peak load by at least 15% and to raise the minimum voltage to achieve an
operational target of 0.94 p.u.

3.2 Optimization Results and Comparative Algorithm Performance

The hybrid methodology involved the application of three metaheuristic algorithms (PSO, BBOA, and
ABBOA-Fuzzy) to identify the optimal BESS capacity and location. This multi-algorithm approach was
chosen to ensure a comprehensive search of the solution space and to perform a comparative analysis,
which was essential for cross-validating the results and identifying the most effective algorithm for this
complex optimization problem.

3.2.1 Algorithm Convergence and Efficiency Analysis

Figure 7 presents the convergence characteristics of the three algorithms evaluated. The plot clearly
demonstrates the superior performance of the ABBOA-Fuzzy algorithm. From the first iteration, ABBOA-
Fuzzy identified a solution within the near-optimal search space with a much lower fitness score compared
to the other two algorithms. Then, the algorithm proceeds with stable, incremental improvements until it
converges to the global optimum.

In contrast, both PSO and BBOA are initialized with highly suboptimal solutions and take many iterations
to converge across the vast search space. Convergence curves from these two algorithms exhibit distinct
plateaus, especially for the early iterations in BBOA. These plateaus reflect how the algorithms were
temporarily trapped in local optima-a common phenomenon in complex optimization and indicative of a
less effective exploration strategy. All algorithms eventually converge toward similar fitness values, but
ABBOA-Fuzzy is demonstrably much more efficient and faster in convergence.

Mwene et al. (2026), Electr. Eng. Energy



Electrical Engineering and Energy | (2026) 5:1

le6
'y —s— PSO
BBOA

1.36 4 —s— ABBOA-Fuzzy
n
2
=
|
g 1.34
(=%
+
=
0w
<]
=l
I
[=]
& 1.32
w
w
"]
E
[
b7
[
m

1.30

X
1.28 1
0 5 10 15 20 25 30

[teration

Figure 7 best fitness score, comparing the performance of PSO, BBOA, and ABBOA-Fuzzy

3.2.2 Determination of the Optimal BESS Solution

The final optimized parameters obtained from each of the three algorithms are summarized in Table 6.
This comparative analysis found consistent results, with all three algorithms independently converging to
a single optimal solution of a 392.6 kW / 1177.76 kWh BESS at Bus 117. This convergence by different
search strategies provides a cross-validated configuration of the global optimum. While the final solution
was identical, the efficiency in reaching it was not. As shown by its faster convergence in Figure 7, the
ABBOA-Fuzzy algorithm proved to be the most efficient method, confirming that the choice of algorithm
significantly impacts the computational effort required.

Table 6 Converged Optimal Solution Parameters from All Algorithms

Performance Optimized (PSO) Optimized (BBOA) Optimized (ABBOA-

Metric Fuzzy)

Optimal BESS Size 392.59 kW/ 1177.76 392.64kW / 1177.79 392.60 kW / 1177.76 kWh

kWh kWh
Optimal Location Bus 117 Bus 117 Bus 117
Final Estimated $455075 $455127 $455079

CAPEX

Best Fitness Score 1,281,575.17 1,281,627.94 1,281,579.94

3.2.3 Grid Performance with the Optimized BESS

The simulation-based validation of the optimized BESS configuration was performed in DigSILENT
PowerFactory. Based on the results from the metaheuristic algorithms, a commercially available
400kW/1200kWh BESS was modelled at its optimal location (Bus 117). Table 7 summarizes the substantial
grid improvements achieved, directly comparing the key performance indicators against the baseline. The
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installation of BESS reduced the peak load from 2.809 MW to 2.374 MW, which is a very significant
reduction of 15.5%. This intervention reduced the peak loading of the main substation transformer from
a critical 99.6% down to a much safer 83.9%.

Table 7 Technical Performance of the feeder with Optimized BESS

Performance Metric Baseline BESS) With Optimized BESS % Improvement
Peak Load (MW) 2.809 2.374 -15.5%
Transformer Loading (%o) 99.6 83.9 -15.8%
Minimum Voltage (p.u.) 0.936 0.952 +1.71%

Figure 8 compares the daily load profile of the feeder before and after the BESS installation. It clearly
illustrates the peak shaving effect of the BESS, which discharges during the evening peak (18:00-21:00) and
clips the peak to provide a flatter, more manageable load profile for the utility.

= Baseline Load (Without BESS)
- Load with Optimized BESS |

2.5 1
=
Z,
— 2.0 1
o
2
o
8 | ]
©
B 15
+= 1.0 1
g -
—_
©
5
h

tof | L]

0.5 A

0 2 A 6 8 10 12 14 16 18 20 2
Time [Hours]

Figure 8 Comparison of the 24-hour feeder load profile with and without the optimized BESS.

The optimized BESS also mitigates the voltage issues of the network effectively. From Table 5, it is
observed that the minimum bus voltage was elevated from 0.936 p.u. in the base case to 0.952 p.u., which
is an improvement of 1.71%. Voltage improvement at the electrically weakest bus (Bus 158) is depicted for
a 24-hour period in Figure 9. This figure clearly demonstrates that the voltage sag occurring in peak hours
can be fully avoided, and the voltage of the feeder is always above the operational target of 0.94 p.u.
throughout the day.
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3.2.4 Validation of Results Against Existing Literature

To validate the findings, the performance of the optimized BESS design has been compared with similar
research work that is available in the literature. A key performance objective of this study was peak demand
reduction, where the final configuration achieved a 15.5% reduction. This result is in agreement with
published findings; for instance, (Arias et al., 2021) achieved a similar peak reduction of approximately
16.7% in a peak-shaving application on a real distribution network, while (Pompern et al., 2023) reported
a comparable reduction of 18% using a similar PSO methodology on the IEEE 33-bus system.
Furthermore, the BESS-to-peak-load power ratio from this study, which is approximately 14% (392.60 kW
BESS for a 2.809 MW peak), is consistent with the ratios found in these other works. The ratio from
(Pompern et al., 2023) was about 20% (0.94 MW BESS for a 4.65 MW peak), while the ratio from (Arias
et al., 2021) was about 25% (0.3 MW BESS for a 1.2 MW peak). The small discrepancies of these results
are as expected because of the different network topologies and load profiles in each study. This
correspondence of both technical performance and sizing ratio with various relevant studies validates the
results of the optimization framework in this paper.

3.3. Techno-Economic Viability

The 15-year lifecycle analysis in NREL's SAM validated the long-term financial viability of the BESS
project. All the lifecycle costs were included in the analysis, as shown in Table 4, including battery
degradation and replacement costs. Financial outputs are summarised in Table 8.

This produced a positive NPV of $43,643, which demonstrates the profitability of the project, with returns
in excess of the 10% nominal discount rate. An IRR of 15.54% is also calculated by the model, representing
a strong return for a utility infrastructure asset. Comparison of LCOE and LPPA price gives further
justification for project profitability, where the lifetime revenue per unit energy (71.09 ¢/kWh) is more than
the lifetime cost (69.31 ¢/kWh).
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Table 8 Key Financial Metrics from SAM Analysis

Metric Value

NPV (Net Present Value) $43,643

IRR (Internal Rate of Return) 15.54%

Year IRR is achieved 15

Levelized Cost of Energy (LCOE) 69.31 ¢/kWh
Levelized Power Purchase Agreement (LPPA) 71.09 ¢/kWh

These financial indicators have been validated through benchmarking the results against similar regional
studies. One of the major outcomes of this study is the IRR of the project, which is 15.54%. The outcome
represents a very sound and financially viable investment opportunity, especially when compared with a
large-scale BESS project in a similar regional context with an IRR of 11% reported by (Mamphogoro et al.,
2022).

The payback period of 15 years further falls within the same timeframe as that considered acceptable in the
study by (Mamphogoro et al., 2022), hence indicating that the project timeline for return on investment is
in line with regional expectations. While the NPV of the project is positive, valued at $43,643, it is smaller
in scale than the multi-million-dollar returns reported in studies on larger systems such as by (Fida et al.,
2023), however, it confirms the same underlying principle of positive financial returns for optimally sized
BESS. This correspondence of key financial indicators with relevant studies validates the project as a
bankable investment case and a cost-effective alternative to traditional network reinforcement.

4. Conclusion and Recommendations

This paper addressed the challenge of integrating a BESS into a constrained rural distribution network by
introducing a two-stage hybrid methodology for its optimal sizing and siting. The first stage of the
methodology was a comparative analysis that benchmarked three metaheuristic algorithms: PSO, BBOA,
and the enhanced ABBOA-Fuzzy. The analysis showed that the ABBOA-Fuzzy algorithm outperforms
others in converging to the optimal solution with the highest speed and efficiency. In turn, the optimization
process yielded a consistent optimum solution of a 392.60 kW / 1177.76 kWh BESS at Bus 117. The
second stage of the methodology validated this solution by confirming that a commercially equivalent 400
kW / 1200 kWh system is both technically effective and economically viable. Simulation results confirmed
that this configuration reduces peak demand by 15.5% and raises the minimum bus voltage from 0.936 p.u.
to 0.952 p.u., meeting all technical objectives. Additionally, a 15-year lifecycle analysis confirmed that this
project is a bankable investment, yielding a positive NPV of $43,643 and an IRR of 15.54%. These findings
demonstrate that an optimally sized and sited BESS offers a cost-effective NWA to enhance grid reliability
in rural feeders. Based on these findings, utilities are encouraged to consider this hybrid optimization
framework for practical planning. The work can be extended in the future by analyzing the economic
benefit of stacking multiple BESS services, such as energy arbitrage and frequency regulation, besides
testing the applicability of the framework across feeders with different load profiles and network topologies.
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