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1. Introduction 

The constant growth in electricity demand, with the increasing penetration of distributed sources, is causing 

severe stresses on the existing electrical distribution systems. This problem is severe in rural areas, where 

long radial distribution networks are subjected to two critical issues during peak load periods: end-of-line 

consumers experience poor power quality due to significant voltage drops, while substation transformers 

become overloaded (Loji et al., 2023; Pjevalica et al., 2023). Traditionally, utilities have responded to these 

challenges by investing in expensive physical infrastructure upgrades, such as installation of larger 

transformers and reinforcement of power lines (Zarei et al., 2024). This approach is inefficient because the 

newly installed equipment is required for only a few hours each day and therefore remains underutilized 

for much of the time (Nourollahi et al., 2022). To overcome these limitations, Battery Energy Storage 
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Systems (BESS) are emerging as flexible Non-Wires Alternative (NWA), offering a focused solution for 

managing peak loads, improving voltage profiles, and therefore modernizing overall power grid stability 

(Loji et al., 2023). 

Various BESS grid applications have been explored in the literature, including frequency regulation (Parajuli 

et al., 2024), peak shaving (Arias et al., 2021), power quality enhancement (Prakash et al., 2022), and energy 

arbitrage. Among them, peak shaving and voltage support have drawn much interest because they could 

delay costly infrastructure investments (Galea et al., 2025). The successful deployment for these targeted 

services depends on the solution of the fundamental challenge relating to optimum placement and sizing 

of BESS. To address this challenge, significant literature has applied metaheuristic algorithms such as 

Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) for obtaining an optimum BESS 

configuration by minimizing multi-objective functions involving network losses, voltage deviations, and 

lifecycle costs (Boonluk et al., 2021; Mat Isa et al., 2023; Pompern et al., 2023). Newer metaheuristic 

algorithms are being developed to perform better than established methods. This study will employ Boda-

Boda Optimization Algorithm (BBOA) and an enhanced Adaptive Boda-Boda Optimization Algorithm 

with Fuzzy logic (ABBOA-Fuzzy) in benchmarking the solution from PSO. 

The interdependence between siting and sizing complicates the optimization problem: Optimal power and 

energy capacity are functions of the location of the BESS, while the optimal location is a function of its 

capacity, and co-optimization is thus necessary (Mat Isa et al., 2023). The degradation of batteries 

introduces one of the most important long-term constraints since it affects the operational reliability of the 

system and the financial return directly. These performance fades come from two main mechanisms: cycle 

degradation, which is the wear from charge/discharge operations, and calendar degradation, which is the 

natural aging of the battery over time (P et al., 2025; Rufino Júnior et al., 2024). For example, the aggressive 

cycles needed for peak shaving accelerate cycle degradation predominantly, which greatly undermines the 

economic performance of the project in the long run (Apribowo et al., 2022). 

The main barrier to achieving a financially viable investment case for BESS, particularly in developing 

countries, is their high capital cost. This cost is determined by both the energy capacity of the battery cells, 

usually denominated in dollars per kilowatt-hour ($/kWh), and the power capacity of the Power Conversion 

System (PCS), denominated in dollars per kilowatt ($/kW) (Zhao et al., 2023). This large upfront 

investment creates a significant financial risk whereby an oversized system may not achieve a positive return 

on investment, while an undersized system fails to deliver the grid benefits required to justify its cost (Zhao 

et al., 2023). For this reason, optimization of BESS configuration is not an academic exercise but a 

commercial necessity needed to ensure that the deployed asset is cost-effective and provides a viable return 

(Zhao et al., 2023).  

A review of existing methodologies reveals a clear division in the approaches to BESS sizing and siting. 

While theoretical optimization studies apply metaheuristic algorithms in order to effectively search the 

solution space, they often result in commercially unavailable BESS capacities. Conversely, simulation-based 

assessments of standard equipment sizes lack a guaranteed path to an optimal solution. Table 1 provides a 

comparative summary of these approaches and visually highlights the resulting gap in the literature. Few 

studies offer a complete framework that bridges theoretical optimization with practical validation using 

industry standard simulation tools. The literature specifically lacks a methodology that concludes with a 

bankable techno-economic analysis one that incorporates lifecycle costs (Capital Expenses (CAPEX), 

Operational Expenses (OPEX), Future equipment replacement cost, taxes and insurance) and realistic 

battery degradation. 
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Table 1 Comparative Analysis of Recent BESS Optimization Studies 

Ref Primary Method Co-
optimiz
es sizing 

and 
siting 

Considers 
Practical 

Commerc
ial Sizes 

Uses Real-
world 

Distributi
on System 

Econom
ic 

Analysis 
Method 

Includes 
BESS 

Degradati
on 

Considers 
Future 

Equipmen
t 

Replaceme
nt 

(Arias et 
al., 2021) 

Enumerative 
Search  

 ✔️ ✔️ 
Payback 
Period ✔️  

(Boonluk 
et al., 
2021) 

PSO ✔️  ✔️ 

Daily 
Op. cost 

min. 
  

(Zhang 
et al., 
2022) 

Economic 
Dispatch opt. 

   
Lifecycle 
(profit 
max.) 

✔️ ✔️ 

(Pomper
n et al., 
2023) 

PSO/Metaheuri
stic ✔️   

Payback 
Period. 

 ✔️ 

(Parajuli 
et al., 
2024) 

Metaheuristic ✔️   None   

(Ngala et 
al., 2022) 

Simulation-
based Opt. ✔️  ✔️ 

Benefit 
Calc. 

  

(Khunkit
ti et al., 
2022) 

Metaheuristic ✔️   

Daily 
Op. 
Cost 
min. 

  

(Wongde
t et al., 
2023) 

PSO    
Lifecycle 
(NPV) ✔️ ✔️ 

(Apribo
wo et al., 

2022) 
MILP ✔️   

Op. 
Cost 
min. 

  

Propose
d 

Method 

Hybrid PSO, 
BBOA & 

ABBOA-Fuzzy- 
Simulation 

✔️ ✔️ ✔️ 
Lifecycle 
(NPV) ✔️ ✔️ 

*opt.-Optimization, MILP- Mixed-Integer Linear Programming, Op.- Operational, min.- Minimization, 
max.- Maximization, Calc.- Calculation 
 
This paper addresses this gap by presenting and applying a two-stage hybrid methodology on a real-world 

case study of the 11kV feeder in Kenya. The novel contributions of this study are: 

• Benchmarking PSO algorithm against two novel, locally-inspired metaheuristics BBOA and 
ABBOA-Fuzzy to provide a cross-validated solution for optimal BESS sizing and siting. 
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• The use of simulation-based performance verification, where the optimal theoretical solution is used 
to select a commercially available BESS whose technical performance is then confirmed in 
DIgSILENT PowerFactory. 

• The development of a bankable techno-economic case that confirms financial viability by integrating 
a comprehensive lifecycle cost analysis with a realistic battery degradation model in NREL’S SAM. 

Section 2 of the paper details the complete methodology, from system modeling and the formulation of 

the optimization algorithms to the techno-economic framework. Section 3 then presents and discusses the 

results, covering the baseline analysis, the comparative optimization, and the final technical and financial 

validation. The paper concludes in Section 4 with the conclusions and recommendations derived from the 

study's findings. 

 

2. Methodology 

Figure 1 presents the flowchart of the whole hybrid methodology, from initial system modeling to the final 

techno-economic validation. The suggested framework includes three major steps: system modeling and 

baseline analysis, theoretical optimization by PSO, BBOA and ABBOA-Fuzzy, and simulation-based 

validation. 

2.1 Case Study 

An 11 kV feeder in Kenya was selected for this study, where all network topology data, including overhead 

line parameters, transformer ratings, and historical load profiles, were provided by the local utility. The 

feeder has a long, radial topology, as depicted in Figure 2 of approximately 69 kilometers, with a mix of 

residential, small commercial, and agricultural loads. This composition of loads gives a pronounced daily 

load profile, normally peaking around 18:00 to 21:00 hours. A complete network was modeled in 

DIgSILENT PowerFactory to represent real-world operational conditions for the feeder. 

 

 
Figure 1 Flowchart of the proposed two-stage methodology 
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Figure 2 Single-line diagram of the 11kV distribution feeder 

2.2 Baseline Analysis 

Baseline analysis was conducted to quantify the performance of the feeder without a BESS. A quasi-

dynamic load flow simulation was executed in DIgSILENT PowerFactory over a 24-hour period using the 

typical daily load profile of the feeder. This established the existing operational condition and determined 

the primary deficiencies of the system. Four key performance indicators were analyzed: Peak load, 

transformer loading, voltage profile and system losses. The baseline analysis confirmed that the feeder 

operates under significant stress, establishing a clear need for a grid support solution and providing the 

performance benchmarks against which the subsequent optimization would be evaluated. 

2.3 Optimal Sizing and Siting of BESS Using Metaheuristic Algorithms 

Following the base case analysis, the first step in the hybrid approach was the application of a metaheuristic 

optimization algorithms to identify the optimal size and location for BESS. This step aims to provide an 

unbiased benchmark to guide a subsequent practical choice of the system. Three different algorithms, PSO, 

BBOA and advanced ABBOA-Fuzzy, were used to arrive at an optimized solution. PSO has been chosen 

here because it has already proven effective in finding global optima of complex nonlinear problems of 

power systems, as demonstrated in (Boonluk et al., 2021; Pompern et al., 2023). Compared to other 

metaheuristic methods, such as Genetic Algorithms, PSO is more frequently selected for such applications 

because of its high computational efficiency (Khunkitti et al., 2022), fast convergence rate (Pompern et al., 

2023), and easier implementation, all of which are crucial advantages when the evaluation of the fitness 

function involves complex power system simulations. The solution obtained with PSO was further 

benchmarked using BBOA and ABBOA-Fuzzy algorithms. 

2.3.1 Objective Function 

The metaheuristic algorithms were implemented within a Python-based environment to co-optimize BESS 

power capacity (PBESS), energy capacity (EBESS), and bus location. The optimization was formulated to 

minimize BESS CAPEX with two important operational constraints derived from baseline analysis: a 

reduction of at least 15% in peak demand of the feeder and the correction of the voltage drop identified. 

Therefore, the optimization was designed in order to impose a defined operational voltage target so that 
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the minimum bus voltage lies above 0.94 p.u., providing a clear safety margin above the statutory lower 

limit at 0.90 p.u. Candidate solutions that failed to meet these constraints were set to a high penalty value 

within the algorithm to effectively guide the search towards a set of technically feasible and cost-effective 

configurations, a standard technique for handling constraints in metaheuristic optimization (Nassef et al., 

2023). The complete objective function to be minimized is formulated as follows: 

𝐹(𝑥) = 𝐶𝑠𝑦𝑠(𝑥) + 𝑤𝑝 ⋅ 𝑚𝑎𝑥⁡(0, 𝑃𝑝𝑒𝑎𝑘(𝑥) − 𝑃𝑡𝑎𝑟𝑔𝑒𝑡) + 𝑤𝑣 ⋅ 𝑚𝑎𝑥⁡(0, 𝑉𝑙𝑖𝑚𝑖𝑡 − 𝑉𝑚𝑖𝑛(𝑥))                   (1) 

Where F(x) represents the fitness value of the candidate solution x; Csys(x) is the system Capital 

Expenditure (CAPEX) calculated as (Cp × PBESS) + (Ce × EBESS), with Cp and Ce representing the unit 

costs in $/kW and $/kWh, respectively. Ppeak(x) denotes the resulting feeder peak demand with the BESS 

in operation, while Ptarget is the target peak demand defined as 0.85 × Pbase (where Pbase is the baseline 

peak load). Vmin(x)  is the minimum bus voltage recorded during the simulation, and Vlimit is the operational 

voltage target set at 0.94 p.u. 

The penalty coefficients wp and wv were empirically set to 105 and 106, respectively. These magnitudes 

were chosen to be significantly larger than the typical CAPEX values, ensuring that any solution violating 

the voltage constraint or failing to meet the peak reduction target is assigned a high fitness score. This 

effectively excludes technically infeasible solutions from the search space during the optimization process. 

A sensitivity analysis was performed to validate these penalty magnitudes. When the penalty factors were set 

to lower values (104), the optimization converged to a trivial solution of 0 kW, indicating that the penalty 
cost was insufficient to outweigh the CAPEX savings of omitting the BESS. However, for penalty factors 

of 105 and above, the algorithm consistently converged to the feasible global optimum (392.6 kW). 

2.3.2 Fitness Evaluation Procedure 

Evaluation of the objective function F(x) required a power system model which could run rapid and 

repetitive simulations at every candidate solution that the metaheuristic algorithms would propose. For this 

purpose, a computationally efficient power flow model of the 11kV feeder was developed in Python. The 

Backward-Forward Sweep (BFS) algorithm was selected as a power flow solver since it has been proven to 

be fast and converges definitely in a radial topology network (Fang et al., 2023). This computational 

efficiency, which can give results with minimum resources, as stated by (Petridis et al., 2021), was essential 

for this study's optimization process. The Python-based BFS solver was benchmarked against DIgSILENT 

PowerFactory to verify its accuracy. The BFS model calculated a minimum voltage of 0.9360 p.u., matching 

the DIgSILENT result of 0.936 p.u. Additionally, the calculated active power losses (0.105 MW) were 

nearly identical to the DIgSILENT benchmark (0.10 MW). This confirms that the BFS engine provides the 

necessary accuracy for the optimization loop while remaining computationally efficient. 

Figure 3 presents a flowchart of this evaluation process. This process is initiated when a metaheuristic 

algorithm (PSO, BBOA and ABBOA-Fuzzy) proposes a candidate solution. This configuration is then 

implemented in the Python model, and a 24-hour load flow simulation is executed to determine the feeder 

performance. The critical outputs of the simulation i.e., the new peak demand, P_peak (x) and minimum 

bus voltage V_min (x) are utilized in Equation (1) to compute the fitness value. This iterative co-simulation 

approach with the BFS algorithm playing the role of the embedded load flow engine has been determined 

as the better method of solving these types of optimization problems (Altaf et al., 2024). 



Electrical Engineering and Energy | (2026) 5:1 

 
Mwene et al. (2026), Electr. Eng. Energy                                                                                                                                                                             23 

 

 
Figure 3 The fitness evaluation process for a single candidate solution 

2.3.3 Boda-Boda Optimization Algorithm (BBOA) 

The BBOA is a metaheuristic that takes inspiration from adaptive navigation strategies of Kenyan boda-

boda (motorcycle taxi) riders. It extends a basic PSO structure with two new, specialized probabilistic 

operators to enhance a better balance between exploration and exploitation. These operators model real-

world decision-making by the riders: 

i. Exploration (Shortcut): The "exploration" factor, specified by a fixed probability α, simulates the 

rider's decision to take a risky but potentially faster shortcut. This can be achieved by adding a 

random vector to the agent's velocity. 

ii. Exploitation (Traffic): An "exploitation" factor regulated by a fixed probability β simulates 

cautious reaction to traffic congestion by slowing down or braking. This is modeled by reducing 

the agent's velocity. 

The velocity and position of each agent are updated according to the following equations: 

𝑣𝑖(𝑡 + 1) = 𝑤 × 𝑣𝑖(𝑡) + 𝑐1 × 𝑟1(𝑝𝑏𝑒𝑠𝑡(𝑖) − 𝑥𝑖(𝑡)) + 𝑐2 × 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 𝑣{𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡} − 𝑣{𝑡𝑟𝑎𝑓𝑓𝑖𝑐}    (2) 

𝑥𝑖(𝑡⁡ + ⁡1) ⁡= ⁡ 𝑥𝑖(𝑡) ⁡+ ⁡𝑣𝑖(𝑡⁡ + ⁡1)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡     (3) 

Where vi⁡is the agent velocity, xi is the agent position, w is the inertia weight, 𝑐1 and 𝑐2 are the cognitive 

and social coefficients, and 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡 ⁡are the personal and global best positions. The term 𝑣{𝑠ℎ𝑜𝑟𝑡𝑐𝑢𝑡} 

is a random vector applied with probability α, and 𝑣{𝑡𝑟𝑎𝑓𝑓𝑖𝑐} represents a velocity reduction applied with 

probability β. 

The main feature of the BBOA is that the parameters α and β are fixed constants defined at the initialization 

of the optimization. This offers a consistent but rigid search strategy because the trade-off between 

exploration and exploitation does not adapt to the advancement of the agent during the search. 
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2.3.4 Adaptive Boda-Boda Optimization Algorithm with Fuzzy Logic (ABBOA-Fuzzy) 

The ABBOA-Fuzzy overcomes the limitation of fixed parameters in the BBOA. The adaptive algorithm 

elevates the model from fixed probabilistic rules to include a fuzzy logic controller that can simulate the 

context-aware judgment of a rider. Exploration factor α and exploitation factor β are instead varied 

dynamically within ABBOA-Fuzzy, rather than using fixed values. 

The core of this enhancement is a fuzzy inference system that modulates α and β depending on a single 

intuitive input: the normalized distance of an agent xi from the current global best solution, gbest. The 

fuzzy inference system utilizes Triangular Membership Functions (trimf) for both the input variable 

(Normalized Distance, D) and the output variables (Exploration α, Exploitation β). The input D represents 

the Euclidean distance of an agent from the global best solution, normalized to the range [0, 1]. The 

membership functions are defined with the following ranges derived from the algorithm's tuning: 

"Near/Low" [0.0, 0.0, 0.3], "Medium" [0.2, 0.5, 0.8], and "Far/High" [0.7, 1.0, 1.0]. The Mamdani 

inference method is employed with a centroid defuzzification strategy. The fuzzy rule base, presented in 

Table 2, was designed to dynamically adjust the search behavior based on the agent's proximity to the 

optimum. 

Table 2 Fuzzy Rule Base for ABBOA-Fuzzy 

Rule  
No. 

IF 
Normalized Distance 

THEN  

( 𝜶 ) (Exploration)  

THEN  

( 𝜷 ) (Exploitation)  

1 Far High Low 

2 Medium Medium Medium 

3 Near Low High 

 

This adaptive mechanism enables the algorithm to gradually shift from a globally exploratory search in the 

early stages to a locally exploitative search toward the later iterations. The position-velocity update equation 

for ABBOA-Fuzzy remains similar to that for BBOA; however, in the update mechanism, dynamically 

adjusted values of α and β from the fuzzy controller at every iteration are utilized. This intelligent adaptive 

strategy enhances the capability of the algorithm for exploring complex nonlinear search spaces while 

preventing fast convergence toward any local optimum, thereby giving a major advantage over the methods 

with fixed parameters of search. The specific hyperparameters configured for each algorithm are detailed 

in Table 3. 

2.4 Practical BESS selection and Techno-Economic Analysis 

The output of the algorithms is a precise, mathematically optimal solution that serves as an unbiased 

benchmark. This theoretical optimum solution may not correspond to a standard commercially available 

BESS module. Therefore, the framework transitions from theoretical optimization to practical validation. 

This process involves identifying the converged theoretical power and energy capacities from the 

algorithms, then choosing the nearest equivalent, commercially available BESS. This selected practical 

system is then modelled in DigSILENT PowerFactory and NREL's SAM for technical and economic 

assessment. 

To investigate the long-term financial viability of the chosen practical BESS configuration, a lifecycle 

analysis was executed using the NREL's SAM. SAM was adopted because it is an industry-standard, 

advanced model capable of projecting project cash flows in detail over several years. The analysis was set 

up to establish the project's NPV over an operational lifetime of 15 years.  
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Table 3 Optimization Algorithm Hyperparameters 

Category Parameter Symbol Value Description 

General Settings Population Size 𝑁 20 Number of search agents  
Maximum 
Iterations 

𝑇max 30 Stopping criterion 

PSO Parameters Inertia Weight 𝑤 0.5 Controls exploration–
exploitation balance  

Cognitive 
Coefficient 

𝑐1 1.5 Influence of personal best 
position  

Social Coefficient 𝑐2 1.5 Influence of global best 
position 

BBOA / ABBOA 
Parameters 

Inertia Weight 𝑤 0.7 Velocity retention factor 

 
Acceleration 
Coefficients 

𝑐1, 𝑐2 1.5 Acceleration factors 

Fuzzy Controller 
(ABBOA) 

Input Variable Normalized 
Distance 

[0, 1] Distance to global best 

(𝑔best)  
Output Variables 𝛼, 𝛽 [0, 1] Adaptive probability 

parameters 

 
NPV was the preferred primary financial metric because, as opposed to the simple payback, it considered 

the time value of money by discounting all future revenues and costs to their present-day value, therefore 

offering a much better indication of overall profitability (Mohamed et al., 2022). 

A key aspect of this modeling was the use of a realistic battery degradation model in SAM. This ensures 

that the financial projections accurately account for the battery's performance fade and the associated 

replacement costs, as simplistic degradation approaches can lead to unreliable conclusions (Shamarova et 

al., 2022). The model simulates the decline in capacity and efficiency due to both cycle degradation i.e., 

charge/discharge operations and calendar degradation i.e., aging over time (Collath et al., 2023). The 

detailed financial assumptions that form the basis of this techno-economic model, including capital costs, 

operational costs, and the calculations for the total upgrade deferral benefit, are provided in Table 4 and 

Table 5. 

The techno-economic parameters were selected based on standard industry benchmarks and regional 

economic conditions. The nominal discount rate of 10% aligns with recent optimization studies for 

renewable energy systems in Kenya, such as the off-grid hybrid assessments by (Adem & Otara, 2023). The 

battery cost projections and performance metrics, including variable operations and maintenance (O&M) 

costs, were derived from the NREL Annual Technology Baseline (Cole & Karmakar, 2023). Furthermore, 

the inclusion of a realistic 1.5% annual degradation rate and an 80% Depth of Discharge (DoD) limit 

address the critical importance of accurate battery modeling in techno-economic assessments, as simplified 

assumptions can significantly bias lifecycle costs (Shabani et al., 2022). 

2.5 BESS Dispatch Strategy and Degradation Modelling 

The technical and financial performance of the BESS is entirely dependent on its operational or "dispatch" 

strategy. This strategy dictates when the BESS charges and discharges to meet its primary objectives of 

peak shaving and voltage support. As these operational decisions directly govern the rate of battery 

degradation and, consequently, the project's profitability, they must be realistically modeled. The following 

subsections detail the dispatch logic and the degradation model used in this analysis. 
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Table 4 Key assumptions for the techno-economic analysis 

Parameter Category Parameter Value Description 

Project and Financial 
assumptions 

Analysis period 15 years BESS project lifetime 

Nominal discount rate 10%/year The minimum 
acceptable rate of return 

Inflation rate 2.5%/year Standard assumption for 
future cost increases 

Income tax rate  30%/year Based on Kenyan 
corporate tax 

Battery System 
Specifications 

Battery type Lithium ion  

Rated Power (AC) 400kW Deliverable power to 
the grid. 

Usable Capacity (AC) 1200kWh The total Energy the 
BESS can deliver 

Round Trip-Efficiency 85%  
Annual degradation 1.5%/year Model’s the battery’s 

loss of capacity over 
time 

System Availability 98%/year 2% accounts for annual 
downtime for 
maintenance 

Capital costs (CAPEX) 

Direct Costs $252/kWh 
$383/kW 

Total installed project 
cost, including all 

hardware, engineering, 
and construction costs 

(Cole & Karmakar, 
2023) 

All-in Installed Cost $637,825 

Operating costs 
(OPEX) 

Annual O&M basis 1.5% of CAPEX Standard industry 
estimates for O&M  

O&M (year 1) $9,637 (Lazard, 2023) 

O&M Escalating rate 2%/year Accounts for inflation 
of operating costs 

Inverter replacement 
cost 

$0.15/W (DC) Cost to replace the 
inverter in year 12 

Primary Financial 
Benefits 

Total upgrade deferral  $1,327,200 Core benefit.  

 

2.5.1 BESS Dispatch Strategy 

A peak shaving strategy based on time was developed to control the operation of the BESS using SAM's 

Manual dispatch controller. This controller follows a user-defined 24-hour schedule that ensures holding 

the battery's capacity for the peak periods. Figure 4 presents the resulting operational profile, which follows 

a single deep charge/discharge cycle per day, timed to coincide with the feeder's load pattern. As illustrated, 

the BESS charges from the grid at its full 400 kW rated power during early morning off-peak hours, remains 

idle all day, and then discharges to feed power into the network during the evening peak, commencing at 

18:00 hours. This simple dispatch strategy ensures that the energy stored in the BESS is used to maximum 

effect in addressing the evening peak constraint directly identified in the baseline analysis. 
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Table 5 Supporting Calculations for the Total Deferred Upgrade Cost 

Parameter Value  Source 

Feeder length requiring upgrade 10.35 km Assumed 15% of the total 69 km 
feeder length. 

Distribution network 
construction cost 

$100,000 / km Based on regional utility costs 
(Ondigo & Wekesa, 2024). 

Subtotal (Line Reinforcement) $1,035,000 Calculated as 10.35𝑘𝑚 ×
$100,000/𝑘𝑚 

Required transformer capacity 
upgrade 

5 MVA From existing 3 MVA to a 
proposed 5 MVA. 

Transformer unit cost $30 / kVA Estimated from manufacturer 
data, Taishan transformers, 2024 

Subtotal (Transformer Upgrade) $150,000 Calculated as 5𝑀𝑉𝐴 ×
1000𝑘𝑉𝐴 × $30/𝑘𝑉𝐴 

Network construction and 
transformer cost 

$1,185,000 $1,035,000+$150,000 

Ancillary costs (installation, etc.) 12% of 1,185,000 
$142,200 

Estimated as a small percentage 
for labor and materials. 

Total Deferred Upgrade Cost $1,327,200 Sum of all component costs. 

 

 
Figure 4 Daily BESS dispatch profile, showing grid charging (negative power) and peak shaving discharge (positive power) 

2.5.2 Degradation Modelling in SAM 

The SAM analysis included a realistic battery degradation model to obtain an accurate financial forecast. 

This is important since degradation affects both the battery's performance and its total cost over the 

project's life. The model includes the two major causes of battery wear, which are cycling degradation due 

to charge and discharge cycles, and calendar degradation due to normal aging over time. A critical 
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determinant of how quickly a battery wears out is its DoD in each cycle. Deeper cycles are harder on the 

battery, which makes it lose capacity faster and shortens its life. Figure 5 from NREL's SAM illustrates this 

relationship by comparing the health of a battery over its lifetime for deep 100% DoD cycles versus 

shallower 80% DoD cycles. As can be seen from Figure 5, limiting the discharge to 80% slows down the 

wear and extends the time when the battery would need to be replaced considerably. In order to take 

advantage of this, a maximum 80% DoD limit was imposed in the simulation for this study. This strategy 

helps to extend the life of the battery, reduce future replacement costs, and will be one of the important 

strategies to make the project economically successful. 

 

 
Figure 5 Impact of Depth of Discharge (DoD) on BESS Cycle Life 

3. Results and Discussion  

The proposed methodology was applied to an 11kV feeder in Kenya, Figure 2 to determine a technically 

effective and financially viable BESS solution. The findings are presented in the order that follows from 

the methodological framework: first, the outcomes of the baseline analysis are detailed to establish initial 

performance benchmarks for the feeder. This is followed by the results of the theoretical optimization as 

conducted by the metaheuristic algorithms. The section concludes with the validated technical performance 

and techno-economic results from NREL's SAM for the selected practical BESS configuration. 

3.1 Baseline Analysis Results 

This baseline analysis, conducted in the absence of any BESS, established that the feeder always operates 

under significant operational stress, particularly during peak periods. A 24-hour quasi-dynamic simulation 

performed in DIgSILENT PowerFactory quantified the key feeder performance benchmarks, and the 

resultant daily load profile is presented in Figure 6. The outcome of the simulation showed a system peak 

load of 2.809 MW, which loaded the main 3 MVA substation transformer to 99.6% of its rated capacity. 

Simultaneously, the feeder also suffered a voltage drop, with the minimum voltage at the electrically furthest 

bus falling to 0.936 p.u. The energy losses were estimated to be 989 kWh for the period of 24 hours. 
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Figure 6 Baseline daily load profile for the 11kV feeder without a BESS 

These findings build a quantitative profile of a feeder operating at full technical capacity. The high 

transformer loading threatens asset health and reliability, leaving no room for future load growth. Similarly, 

although the minimum voltage of 0.936 p.u. is technically in compliance with the statutory 0.90 p.u. limit, 

this condition represents significant voltage stress. Therefore, these baseline values provide the critical 

performance benchmarks for the subsequent optimization. The major technical objectives for the BESS 

are accordingly to reduce the peak load by at least 15% and to raise the minimum voltage to achieve an 

operational target of 0.94 p.u. 

3.2 Optimization Results and Comparative Algorithm Performance 

The hybrid methodology involved the application of three metaheuristic algorithms (PSO, BBOA, and 

ABBOA-Fuzzy) to identify the optimal BESS capacity and location. This multi-algorithm approach was 

chosen to ensure a comprehensive search of the solution space and to perform a comparative analysis, 

which was essential for cross-validating the results and identifying the most effective algorithm for this 

complex optimization problem. 

3.2.1 Algorithm Convergence and Efficiency Analysis 

Figure 7 presents the convergence characteristics of the three algorithms evaluated. The plot clearly 

demonstrates the superior performance of the ABBOA-Fuzzy algorithm. From the first iteration, ABBOA-

Fuzzy identified a solution within the near-optimal search space with a much lower fitness score compared 

to the other two algorithms. Then, the algorithm proceeds with stable, incremental improvements until it 

converges to the global optimum. 

In contrast, both PSO and BBOA are initialized with highly suboptimal solutions and take many iterations 
to converge across the vast search space. Convergence curves from these two algorithms exhibit distinct 
plateaus, especially for the early iterations in BBOA. These plateaus reflect how the algorithms were 
temporarily trapped in local optima-a common phenomenon in complex optimization and indicative of a 
less effective exploration strategy. All algorithms eventually converge toward similar fitness values, but 
ABBOA-Fuzzy is demonstrably much more efficient and faster in convergence. 
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Figure 7 best fitness score, comparing the performance of PSO, BBOA, and ABBOA-Fuzzy 

3.2.2 Determination of the Optimal BESS Solution 

The final optimized parameters obtained from each of the three algorithms are summarized in Table 6. 

This comparative analysis found consistent results, with all three algorithms independently converging to 

a single optimal solution of a 392.6 kW / 1177.76 kWh BESS at Bus 117. This convergence by different 

search strategies provides a cross-validated configuration of the global optimum. While the final solution 

was identical, the efficiency in reaching it was not. As shown by its faster convergence in Figure 7, the 

ABBOA-Fuzzy algorithm proved to be the most efficient method, confirming that the choice of algorithm 

significantly impacts the computational effort required. 

Table 6  Converged Optimal Solution Parameters from All Algorithms 

Performance 
Metric 

Optimized (PSO) Optimized (BBOA) Optimized (ABBOA-
Fuzzy) 

Optimal BESS Size 392.59 kW/ 1177.76 
kWh 

392.64kW / 1177.79 
kWh 

392.60 kW / 1177.76 kWh 

Optimal Location Bus 117 Bus 117 Bus 117 

Final Estimated 
CAPEX 

$455075 $455127 $455079 

Best Fitness Score 1,281,575.17 1,281,627.94 1,281,579.94 

3.2.3 Grid Performance with the Optimized BESS 

The simulation-based validation of the optimized BESS configuration was performed in DigSILENT 

PowerFactory. Based on the results from the metaheuristic algorithms, a commercially available 

400kW/1200kWh BESS was modelled at its optimal location (Bus 117). Table 7 summarizes the substantial 

grid improvements achieved, directly comparing the key performance indicators against the baseline. The 
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installation of BESS reduced the peak load from 2.809 MW to 2.374 MW, which is a very significant 

reduction of 15.5%. This intervention reduced the peak loading of the main substation transformer from 

a critical 99.6% down to a much safer 83.9%. 

Table 7 Technical Performance of the feeder with Optimized BESS 

Performance Metric Baseline BESS) With Optimized BESS % Improvement 

Peak Load (MW) 2.809 2.374 -15.5% 

Transformer Loading (%) 99.6 83.9 -15.8% 

Minimum Voltage (p.u.) 0.936 0.952 +1.71% 

 
Figure 8 compares the daily load profile of the feeder before and after the BESS installation. It clearly 

illustrates the peak shaving effect of the BESS, which discharges during the evening peak (18:00-21:00) and 

clips the peak to provide a flatter, more manageable load profile for the utility. 

 

 
Figure 8 Comparison of the 24-hour feeder load profile with and without the optimized BESS. 

The optimized BESS also mitigates the voltage issues of the network effectively. From Table 5, it is 

observed that the minimum bus voltage was elevated from 0.936 p.u. in the base case to 0.952 p.u., which 

is an improvement of 1.71%. Voltage improvement at the electrically weakest bus (Bus 158) is depicted for 

a 24-hour period in Figure 9. This figure clearly demonstrates that the voltage sag occurring in peak hours 

can be fully avoided, and the voltage of the feeder is always above the operational target of 0.94 p.u. 

throughout the day. 
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Figure 9 24-Hour Voltage Profile at Weakest Bus (Bus 158) 

3.2.4 Validation of Results Against Existing Literature 

To validate the findings, the performance of the optimized BESS design has been compared with similar 

research work that is available in the literature. A key performance objective of this study was peak demand 

reduction, where the final configuration achieved a 15.5% reduction. This result is in agreement with 

published findings; for instance, (Arias et al., 2021) achieved a similar peak reduction of approximately 

16.7% in a peak-shaving application on a real distribution network, while (Pompern et al., 2023) reported 

a comparable reduction of 18% using a similar PSO methodology on the IEEE 33-bus system. 

Furthermore, the BESS-to-peak-load power ratio from this study, which is approximately 14% (392.60 kW 

BESS for a 2.809 MW peak), is consistent with the ratios found in these other works. The ratio from 

(Pompern et al., 2023) was about 20% (0.94 MW BESS for a 4.65 MW peak), while the ratio from (Arias 

et al., 2021) was about 25% (0.3 MW BESS for a 1.2 MW peak). The small discrepancies of these results 

are as expected because of the different network topologies and load profiles in each study. This 

correspondence of both technical performance and sizing ratio with various relevant studies validates the 

results of the optimization framework in this paper. 

3.3. Techno-Economic Viability 

The 15-year lifecycle analysis in NREL's SAM validated the long-term financial viability of the BESS 

project. All the lifecycle costs were included in the analysis, as shown in Table 4, including battery 

degradation and replacement costs. Financial outputs are summarised in Table 8.  

This produced a positive NPV of $43,643, which demonstrates the profitability of the project, with returns 

in excess of the 10% nominal discount rate. An IRR of 15.54% is also calculated by the model, representing 

a strong return for a utility infrastructure asset. Comparison of LCOE and LPPA price gives further 

justification for project profitability, where the lifetime revenue per unit energy (71.09 ¢/kWh) is more than 

the lifetime cost (69.31 ¢/kWh).  
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Table 8 Key Financial Metrics from SAM Analysis 

Metric Value 

NPV (Net Present Value) $43,643 

IRR (Internal Rate of Return) 15.54% 

Year IRR is achieved 15 

Levelized Cost of Energy (LCOE) 69.31 ¢/kWh 

Levelized Power Purchase Agreement (LPPA) 71.09 ¢/kWh 

 
These financial indicators have been validated through benchmarking the results against similar regional 

studies. One of the major outcomes of this study is the IRR of the project, which is 15.54%. The outcome 

represents a very sound and financially viable investment opportunity, especially when compared with a 

large-scale BESS project in a similar regional context with an IRR of 11% reported by (Mamphogoro et al., 

2022). 

The payback period of 15 years further falls within the same timeframe as that considered acceptable in the 

study by (Mamphogoro et al., 2022), hence indicating that the project timeline for return on investment is 

in line with regional expectations. While the NPV of the project is positive, valued at $43,643, it is smaller 

in scale than the multi-million-dollar returns reported in studies on larger systems such as by (Fida et al., 

2023), however, it confirms the same underlying principle of positive financial returns for optimally sized 

BESS. This correspondence of key financial indicators with relevant studies validates the project as a 

bankable investment case and a cost-effective alternative to traditional network reinforcement. 

 

4. Conclusion and Recommendations  

This paper addressed the challenge of integrating a BESS into a constrained rural distribution network by 

introducing a two-stage hybrid methodology for its optimal sizing and siting. The first stage of the 

methodology was a comparative analysis that benchmarked three metaheuristic algorithms: PSO, BBOA, 

and the enhanced ABBOA-Fuzzy. The analysis showed that the ABBOA-Fuzzy algorithm outperforms 

others in converging to the optimal solution with the highest speed and efficiency. In turn, the optimization 

process yielded a consistent optimum solution of a 392.60 kW / 1177.76 kWh BESS at Bus 117. The 

second stage of the methodology validated this solution by confirming that a commercially equivalent 400 

kW / 1200 kWh system is both technically effective and economically viable. Simulation results confirmed 

that this configuration reduces peak demand by 15.5% and raises the minimum bus voltage from 0.936 p.u. 

to 0.952 p.u., meeting all technical objectives. Additionally, a 15-year lifecycle analysis confirmed that this 

project is a bankable investment, yielding a positive NPV of $43,643 and an IRR of 15.54%. These findings 

demonstrate that an optimally sized and sited BESS offers a cost-effective NWA to enhance grid reliability 

in rural feeders. Based on these findings, utilities are encouraged to consider this hybrid optimization 

framework for practical planning. The work can be extended in the future by analyzing the economic 

benefit of stacking multiple BESS services, such as energy arbitrage and frequency regulation, besides 

testing the applicability of the framework across feeders with different load profiles and network topologies. 
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