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Abstract: In this study, an artificial intelligence-based quality control system was
developed for the automatic detection and classification of defects in a tile. The
dataset created to reduce human-induced errors in the production process and
increase inspection accuracy consists of a total of 405 images.

During the model development phase, CNN, MobileNetV2, ResNet50, and
EfficientNetB0 architectures were used. The performance of the models was
evaluated using the 10-fold cross-validation method for an objective comparison.

The experimental results show that the EfficientNetBO architecture achieved the
highest performance with an accuracy rate of 96.73%. ResNet50 achieved 95.45%,
CNN achieved 94.91%, and MobileNetV2 achieved 92.36% accuracy.

Keywords Deep Learning, Image Processing, Tile Defect Detection, Transfer
Learning.

1. Introduction

Ceramic tiles have adorned buildings for centuries as a decorative element in both the interior and exterior
of various architectural structures, including residential buildings, public works, and places of worship.
Their history dates back to ancient civilizations such as Egypt, Assyria, and Babylonia, and later, the
Romans and Greeks also used decorative tiles. The spread of Islam further accelerated their cultural
significance, and eventually, they became widespread in Europe during the Middle Ages (Michalak, 2021).
The Industrial Revolution made tiles widely available. Ceramic tiles have been valued for centuries due to
their durability and excellent resistance to external elements (Michalak, 2021). Today, modern ceramic tile
manufacturing has reached remarkable levels of mechanization and automation, particulatly in raw material
processing (Lu et al., 2022).

The quality of ceramic tiles is one of the key factors determining the competitiveness of building materials
companies. Even minor defects on the surface or edges of tiles can reduce their aesthetic and performance
properties, as well as lead to significant economic losses. The production process of ceramic tiles, on the
other hand, can lead to various defects, such as dirt, scratches, holes, uneven colors, corner errors, and so
on. However, despite technological advances, the inspection of finished tiles for defects is largely done
manually. Traditional visual inspection methods, performed manually by operators, are characterized by
low speed, high subjectivity, and staff fatigue. This traditional approach is not only labor-intensive but also
prone to human error, highlighting the need for more efficient and intelligent quality control solutions (Lu
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et al., 2022). In this regard, automated visual inspection systems (AVIS) based on machine vision and
artificial intelligence technologies have been actively developed in recent years.
Classic image processing algorithms using threshold binarization, morphological operations, and edge
detection methods made it possible to identify surface defects such as cracks, stains, glaze bubbles, and
scratches. However, they demonstrated low resistance to changes in lighting, texture, and tile geometry. In
addition, most research has focused on surface defects, while edge (boundary) defects—curvature,
chipping, and thickness deviations—remained understudied, despite their critical impact on installation
quality and product durability. The development of deep learning has opened up new possibilities for
automatic image analysis. Modern architectures, such as Convolutional Neural Networks (CNN) and
YOLO, have demonstrated high accuracy and generalization ability in defect detection and classification
tasks. However, the application of deep models for ceramic tile edge defect detection tasks remains rare.
This work aims to develop a hybrid system that combines the advantages of deep learning and classical
geometric analysis methods for accurate, fast, and cost-effective real-time detection of defects on the edges
and surface of ceramic tiles. Research in the field of automatic quality control of ceramic tiles can be divided
into three stages:

e The use of traditional image processing methods.

e The development of geometric analysis algorithms for measuring dimensions and distortions.

e The introduction of deep learning methods and hybrid intelligent systems.
In the first stage, Elbehiery et al. (2005) proposed a method for detecting surface defects based on
morphological operations and the Canny operator. Their approach improved the detection of defect
boundaries but proved to be sensitive to noise and unstable when lighting conditions changed. Later,
Hocenski and Keser (2007) applied an improved Canny algorithm and a derivative of directional gradients
to detect edge defects, achieving an accuracy of about 98% in laboratory tests. Golkar et al. (2011) paid
particular attention to edge defects, proposing the AVIS system, which uses inexpensive CMOS cameras
and LED lighting to detect warping, chipping, and thickness deviations in tiles. Their approach was based
on extracting linear features and comparing them with reference lines, which allowed them to achieve a
relative measurement error of about 1.44%. However, the method depended on the fixed position of the
cameras and required precise threshold settings, which limited its application on production lines.
With the advent of deep convolutional neural networks, significant progress has been made in automatic
image analysis. ResNet, EfficientNet, U-Net, and YOLOvS architectures provide high accuracy in defect
classification and segmentation even in noisy and unstructured data conditions. However, most current
research focuses on surface defects, while the analysis of geometric deviations, such as edge bending or
thickness heterogeneity, remains understudied.
In recent years, a number of authors have proposed hybrid approaches that combine geometric
approximation of lines with neural network training. Such systems use CNN to locate potential defect areas,
then perform quantitative analysis of shape and curvature using algorithms such as Hough and PCA. This
class of methods demonstrates increased accuracy and noise resistance, combining the interpretability of
traditional image processing with the adaptability of deep models.
Thus, analysis of the literature shows that the development of a universal, stable, and cost-effective system
for the automatic detection of defects in ceramic tile edges, integrating the advantages of classical and neural
network analysis methods, remains a pressing scientific task.
In the second chapter a framework of this study and related background theory are presented. The results
of the experiments and evaluation of these results are presented in the third chapter. In the final chapter
this paper is concluded.
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2. Material and Method

The dataset used in this study was created from images of defective and intact tile surfaces obtained on the
production line. The images were collected to represent various lighting conditions, color tones, and surface
textures. All images were captured using a camera mounted on a fixed rod, with the tiles placed on a black
surface at a fixed height and acquired sequentially under controlled settings. The dataset contains a total of
405 images, including 300 defective and 105 intact tile images, resulting in an initially imbalanced class
distribution. To mitigate the potential impact of this class imbalance on model performance and to improve
generalization, data augmentation techniques were applied more intensively to the minority class.
Augmentation operations such as random rotation, horizontal and vertical flipping, brightness adjustment,
noise injection, and zooming were performed. Through this targeted augmentation strategy, the dataset
was expanded to 550 images, comprising 300 defective and 250 intact samples, thereby significantly
reducing the degree of class imbalance. In addition, class-aware evaluation was conducted using metrics
beyond overall accuracy to ensure that the reported performance reflects balanced behavior across both
classes. Figure 1 presents representative examples of defective and intact tiles.

103

Figure 1 The samples of defective and intact tiles

In this study, four different deep learning models: CNN, MobileNetV2, ResNet50, EfficientNetBO were
used for the classification of tile defects.

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are artificial neural network architectures based on local feature
extraction, widely used in the field of deep learning, particularly for image processing, object recognition,
and classification tasks. CNNs scan the input data using sliding filters (kernels) to detect important patterns
in local regions, thereby creating feature maps. This approach allows the network to automatically learn
patterns itself, replacing the manually defined features used in traditional methods (Li et al., 2020). CNN
architectures typically consist of convolutional, activation, pooling, and fully connected layers, and these
structures enhance the model's overall performance by enabling hierarchical feature extraction (IKChan et al.,
2019). As noted by LeCun et al. (2015), deep convolutional networks have achieved significant success on
complex data types such as images, video, and audio. Recent studies, however, have examined in detail the
effects of developments in convolution types (e.g., 1D, 2D, or multi-dimensional), arrangement techniques,
and architectural designs on CNN performance (Li et al., 2020; Younesi et al., 2024).

2.2 MobileNetV2

MobileNetV2 is an efficiency-focused CNN architecture designed for use on mobile and embedded devices
with limited resources. The key innovation of this architecture is that it is constructed using inverted residual
expansion-projection layers, as opposed to traditional residual blocks; processing is performed with
depthwise convolutions while keeping the input and output channels narrow, and it is recommended to
remove non-linearities in the bottleneck layers (Sandler et al., 2018). This design enables processing with
fewer multiply-adds operations and a lower number of parameters while maintaining the same level of
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accuracy; for example, it is more efficient in object classification, detection, and segmentation tasks (Sandler
et al., 2018).

2.3 ResNet50

ResNet50, a significant milestone in the field of deep learning, is a CNN architecture based on the “residual
learning” approach. Developed by Kaiming He and colleagues, this model provides a solution to the
vanishing gradient and accuracy drop problems encountered in multi-layer networks (He, et al., 2016). The
fundamental difference of ResNet50 is that it uses “shortcut connections” instead of traditional layer stacks,
allowing the outputs of certain layers to be directly transferred to subsequent layers. This enables the network
to maintain its learning performance while increasing its depth, making the training process more stable.
With its 50-layer structure, the model has achieved high accuracy rates on large datasets such as ImageNet
and has served as the basis for many deep network architectures developed later.

2.4 EfficientNetB0

EfficientNetBO0 is an innovative convolutional neural network architecture that aims to optimize the balance
between model accuracy and computational efficiency in the field of deep learning. Proposed by Tan and Le
(2019), this approach is based on the “compound scaling” method, which simultaneously scales model width,
depth, and resolution. This method allows for the development of models that are lightweight enough to
run on smaller devices yet powerful enough to deliver high accuracy by balancing resource usage.
EfficientNetBO has achieved higher accuracy with fewer parameters compared to other CNN-based
architectures and has thus begun to be widely used in many areas such as classification, object recognition,
and medical image analysis (Tan & Le, 2019).

In this study, the confusion matrix and a set of evaluation metrics to understand how well the classification
model performed were used. For each class, a matrix was formed by placing the actual observations and the
model’s predictions side by side, as shown in Table 1. In this structure, each column reflects the predicted
class, while each row reflects the actual class. A true positive (TP) and a true negative (TN) mark the moments
when the model recognizes the tiles as they truly are: identifying a condition when it is defective or
recognizing its intact. False positives (FP) and false negatives (FN), on the other hand, remind us that
scientific tools are not perfect. A false positive occurs when the model signals danger where there is none,
while a false negative hides a condition that truly exists. Together, the quantities TP, FP, TN, and FN allow
us to compute essential indicators such as accuracy, sensitivity, precision, the Area Under the Curve (AUC),
and the F1-Score. These measures help us judge the reliability and usefulness of the model’s conclusions.

Table 1 Confusion matrix definition

Predictions
Reference
Defective Intact
Defective TP FN
Intact FP TN

To evaluate the model’s performance with rigor, the 10-fold cross-validation method was employed. In this
approach, the dataset was gently separated into ten equal portions. During each cycle, nine of these portions
served as the training ground where the model learned, while the remaining part was reserved for testing its
understanding. This sequence was repeated ten times, allowing the model to be tested under many different
conditions. Fach fold offered its own accuracy value and its own confusion matrix, much like repeated
experiments that reveal subtle variations in a phenomenon. Figure 2 illustrates this process, showing how
the rotation of training and testing parts helps us reach a more trustworthy evaluation of the model’s true
capability (Abdullayeva & Kahramanlt Ornek, 2024).
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A confusion matrix was employed to observe how well the model performed for each class, using measures
such as Accuracy, Precision, Sensitivity, F1-Score, and AUC. These metrics help us look closely at the
strengths and weaknesses of the model, much like examining the results of repeated experiments. The

formulas for each of these measurements are presented in Table 2, offering a clear view of how they are
calculated and interpreted.

Table 2 Classification evaluation metrics

Metric

Accuracy

Precision

Sensitivity

F1-Score

AUC

Formula

Acc

tp

P:—
tp+ fp

tp

S=w+/m

*(e7a) (e o)

F1 — score =

_ tp+tn
Ttpt+fpttn+fn

(tp Tfn) + (tp TfP)

1 tp
AUC ==
o

+ 2 )
tp+fn tp+fp

*tp: true positive, tn: true negative, fp: false positive, fn: false negative
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3. Results and Discussion

This section presents experimental results to evaluate the performance of the developed system. Four
different deep learning models—CNN, MobileNetV2, EfficientNetB0, and ResNet50—were trained and
tested using a 10-fold cross-validation method. The confusion matrix values generated for each fold allowed
for detailed analysis of the models' cotrect classification rates and error types. All models used in the study
were trained using the transfer learning approach. This reduced the training time and increased the accuracy
rate. In Table 3, the accuracy, precision, sensitivity, F1-score, and AUC values of all used algorithms atre
given. Figure 3 shows the confusion matrix of all four methods.

The results of the 10-fold cross-validation applied to measure the generalization ability of the model are
presented in the bar chart in Figure 4.

The classification accuracy of the CNN is 94.91%. The lowest accuracy is 89.09% in the third and sixth
folds, while it reaches 100% accuracy in the eighth fold. The standard deviation of the fold accuracies is 3.72.
The classification accuracy of the MobileNetV2 is 92.36%. The lowest accuracy is 78.18% in the seventh
fold, while it reaches 100% accuracy in the second and fourth folds. The standard deviation of the fold
accuracies is 7.80.

The classification accuracy of the ResNet50 is 95.45%. The lowest accuracy is 90.91% in the second and
sixth folds, while it reaches 98.18% accuracy in five folds. The standard deviation of the fold accuracies is
3.12.

The classification accuracy of EfficientNetBO0 is 96.73%. The lowest accuracy is 90.91% in the last fold, and
it achieves 94.55% accuracy in the first fold. In three folds, the method achieves 96.36% accuracy, while in
five folds it reaches 98.18%. The standard deviation of the fold accuracies is 2.54.

Sensitivity, Precision, Fl-score, and AUC are all 0.95, 0.96, and 0.97 for CNN, ResNet50, and
EfficientNetB0, respectively. It demonstrates the stability of these algorithms for this problem.

As seen in Table 3, Figure 3, and Figure 4, all four algorithms achieved satisfactory results, with
EfficientNetBO obtaining the highest classification accuracy at 96.73%. Figure 4 also shows that
EfficientNetB0’s performance across folds is more balanced compared to the other models.

MobileNetV2 performed the worst among the models. This algorithm misclassified more tiles as defective
when they were not, resulting in a higher number of false positives. This resulted in high sensitivity as 1 and
low precision as 0.88 values (Table 3). Figure 4 shows that MobileNetV2’s performance across folds is also
more imbalanced.

Table 3 Accuracy, precision, sensitivity, F1-score, and AUC values of all algorithms

Accuracy Precision Sensitivity F1-score AUC
CNN 94.91 0.95 0.95 0.95 0.95
MobileNetV2 92.36 0.88 1 0.94 0.94
ResNet50 95.45 0.96 0.96 0.96 0.96
EfficientNetBO 96.73 0.97 0.97 0.97 0.97
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4. Conclusion

In this study, the quality of ceramic tiles was analyzed. Four deep learning architectures—CNN,
MobileNetV2, ResNet50, and EfficientNetBO—were evaluated using k-fold cross-validation. The results
demonstrate that all models achieved satisfactory performance; however, EfficientNetB0 outperformed the
others with the highest accuracy and the lowest performance variability across folds. EfficientNetB0O showed
strong generalization capability, making it the most suitable architecture for tile defect detection within the
scope of this study.

Overall, the findings highlight the potential of deep learning-based approaches for automated tile quality
inspection. Future work may include expanding the dataset, experimenting with additional architectures, and
integrating real-time inference to further support industrial deployment.
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