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1. Introduction 

Ceramic tiles have adorned buildings for centuries as a decorative element in both the interior and exterior 

of various architectural structures, including residential buildings, public works, and places of worship. 

Their history dates back to ancient civilizations such as Egypt, Assyria, and Babylonia, and later, the 

Romans and Greeks also used decorative tiles. The spread of Islam further accelerated their cultural 

significance, and eventually, they became widespread in Europe during the Middle Ages (Michalak, 2021). 

The Industrial Revolution made tiles widely available. Ceramic tiles have been valued for centuries due to 

their durability and excellent resistance to external elements (Michalak, 2021). Today, modern ceramic tile 

manufacturing has reached remarkable levels of mechanization and automation, particularly in raw material 

processing (Lu et al., 2022). 

The quality of ceramic tiles is one of the key factors determining the competitiveness of building materials 

companies. Even minor defects on the surface or edges of tiles can reduce their aesthetic and performance 

properties, as well as lead to significant economic losses. The production process of ceramic tiles, on the 

other hand, can lead to various defects, such as dirt, scratches, holes, uneven colors, corner errors, and so 

on. However, despite technological advances, the inspection of finished tiles for defects is largely done 

manually. Traditional visual inspection methods, performed manually by operators, are characterized by 

low speed, high subjectivity, and staff fatigue. This traditional approach is not only labor-intensive but also 

prone to human error, highlighting the need for more efficient and intelligent quality control solutions (Lu 
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et al., 2022). In this regard, automated visual inspection systems (AVIS) based on machine vision and 

artificial intelligence technologies have been actively developed in recent years. 

Classic image processing algorithms using threshold binarization, morphological operations, and edge 

detection methods made it possible to identify surface defects such as cracks, stains, glaze bubbles, and 

scratches. However, they demonstrated low resistance to changes in lighting, texture, and tile geometry. In 

addition, most research has focused on surface defects, while edge (boundary) defects—curvature, 

chipping, and thickness deviations—remained understudied, despite their critical impact on installation 

quality and product durability. The development of deep learning has opened up new possibilities for 

automatic image analysis. Modern architectures, such as Convolutional Neural Networks (CNN) and 

YOLO, have demonstrated high accuracy and generalization ability in defect detection and classification 

tasks. However, the application of deep models for ceramic tile edge defect detection tasks remains rare. 

This work aims to develop a hybrid system that combines the advantages of deep learning and classical 

geometric analysis methods for accurate, fast, and cost-effective real-time detection of defects on the edges 

and surface of ceramic tiles. Research in the field of automatic quality control of ceramic tiles can be divided 

into three stages: 

• The use of traditional image processing methods. 

• The development of geometric analysis algorithms for measuring dimensions and distortions. 

• The introduction of deep learning methods and hybrid intelligent systems. 

In the first stage, Elbehiery et al. (2005) proposed a method for detecting surface defects based on 

morphological operations and the Canny operator. Their approach improved the detection of defect 

boundaries but proved to be sensitive to noise and unstable when lighting conditions changed. Later, 

Hocenski and Keser (2007) applied an improved Canny algorithm and a derivative of directional gradients 

to detect edge defects, achieving an accuracy of about 98% in laboratory tests. Golkar et al. (2011) paid 

particular attention to edge defects, proposing the AVIS system, which uses inexpensive CMOS cameras 

and LED lighting to detect warping, chipping, and thickness deviations in tiles. Their approach was based 

on extracting linear features and comparing them with reference lines, which allowed them to achieve a 

relative measurement error of about 1.44%. However, the method depended on the fixed position of the 

cameras and required precise threshold settings, which limited its application on production lines. 

With the advent of deep convolutional neural networks, significant progress has been made in automatic 

image analysis. ResNet, EfficientNet, U-Net, and YOLOv8 architectures provide high accuracy in defect 

classification and segmentation even in noisy and unstructured data conditions. However, most current 

research focuses on surface defects, while the analysis of geometric deviations, such as edge bending or 

thickness heterogeneity, remains understudied. 

In recent years, a number of authors have proposed hybrid approaches that combine geometric 

approximation of lines with neural network training. Such systems use CNN to locate potential defect areas, 

then perform quantitative analysis of shape and curvature using algorithms such as Hough and PCA. This 

class of methods demonstrates increased accuracy and noise resistance, combining the interpretability of 

traditional image processing with the adaptability of deep models. 

Thus, analysis of the literature shows that the development of a universal, stable, and cost-effective system 

for the automatic detection of defects in ceramic tile edges, integrating the advantages of classical and neural 

network analysis methods, remains a pressing scientific task. 

In the second chapter a framework of this study and related background theory are presented. The results 

of the experiments and evaluation of these results are presented in the third chapter. In the final chapter 

this paper is concluded. 
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2. Material and Method 

The dataset used in this study was created from images of defective and intact tile surfaces obtained on the 

production line. The images were collected to represent various lighting conditions, color tones, and surface 

textures. All images were captured using a camera mounted on a fixed rod, with the tiles placed on a black 

surface at a fixed height and acquired sequentially under controlled settings. The dataset contains a total of 

405 images, including 300 defective and 105 intact tile images, resulting in an initially imbalanced class 

distribution. To mitigate the potential impact of this class imbalance on model performance and to improve 

generalization, data augmentation techniques were applied more intensively to the minority class. 

Augmentation operations such as random rotation, horizontal and vertical flipping, brightness adjustment, 

noise injection, and zooming were performed. Through this targeted augmentation strategy, the dataset 

was expanded to 550 images, comprising 300 defective and 250 intact samples, thereby significantly 

reducing the degree of class imbalance. In addition, class-aware evaluation was conducted using metrics 

beyond overall accuracy to ensure that the reported performance reflects balanced behavior across both 

classes. Figure 1 presents representative examples of defective and intact tiles. 

 

    
Figure 1 The samples of defective and intact tiles 

 

In this study, four different deep learning models: CNN, MobileNetV2, ResNet50, EfficientNetB0 were 

used for the classification of tile defects. 

2.1 Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are artificial neural network architectures based on local feature 

extraction, widely used in the field of deep learning, particularly for image processing, object recognition, 

and classification tasks. CNNs scan the input data using sliding filters (kernels) to detect important patterns 

in local regions, thereby creating feature maps. This approach allows the network to automatically learn 

patterns itself, replacing the manually defined features used in traditional methods (Li et al., 2020). CNN 

architectures typically consist of convolutional, activation, pooling, and fully connected layers, and these 

structures enhance the model's overall performance by enabling hierarchical feature extraction (Khan et al., 

2019). As noted by LeCun et al. (2015), deep convolutional networks have achieved significant success on 

complex data types such as images, video, and audio. Recent studies, however, have examined in detail the 

effects of developments in convolution types (e.g., 1D, 2D, or multi-dimensional), arrangement techniques, 

and architectural designs on CNN performance (Li et al., 2020; Younesi et al., 2024). 

2.2 MobileNetV2 

MobileNetV2 is an efficiency-focused CNN architecture designed for use on mobile and embedded devices 

with limited resources. The key innovation of this architecture is that it is constructed using inverted residual 

expansion-projection layers, as opposed to traditional residual blocks; processing is performed with 

depthwise convolutions while keeping the input and output channels narrow, and it is recommended to 

remove non-linearities in the bottleneck layers (Sandler et al., 2018). This design enables processing with 

fewer multiply-adds operations and a lower number of parameters while maintaining the same level of 
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accuracy; for example, it is more efficient in object classification, detection, and segmentation tasks (Sandler 

et al., 2018). 

2.3 ResNet50 

ResNet50, a significant milestone in the field of deep learning, is a CNN architecture based on the “residual 

learning” approach. Developed by Kaiming He and colleagues, this model provides a solution to the 

vanishing gradient and accuracy drop problems encountered in multi-layer networks (He, et al., 2016). The 

fundamental difference of ResNet50 is that it uses “shortcut connections” instead of traditional layer stacks, 

allowing the outputs of certain layers to be directly transferred to subsequent layers. This enables the network 

to maintain its learning performance while increasing its depth, making the training process more stable. 

With its 50-layer structure, the model has achieved high accuracy rates on large datasets such as ImageNet 

and has served as the basis for many deep network architectures developed later. 

2.4 EfficientNetB0 

EfficientNetB0 is an innovative convolutional neural network architecture that aims to optimize the balance 

between model accuracy and computational efficiency in the field of deep learning. Proposed by Tan and Le 

(2019), this approach is based on the “compound scaling” method, which simultaneously scales model width, 

depth, and resolution. This method allows for the development of models that are lightweight enough to 

run on smaller devices yet powerful enough to deliver high accuracy by balancing resource usage. 

EfficientNetB0 has achieved higher accuracy with fewer parameters compared to other CNN-based 

architectures and has thus begun to be widely used in many areas such as classification, object recognition, 

and medical image analysis (Tan & Le, 2019).  

In this study, the confusion matrix and a set of evaluation metrics to understand how well the classification 

model performed were used. For each class, a matrix was formed by placing the actual observations and the 

model’s predictions side by side, as shown in Table 1. In this structure, each column reflects the predicted 

class, while each row reflects the actual class. A true positive (TP) and a true negative (TN) mark the moments 

when the model recognizes the tiles as they truly are: identifying a condition when it is defective or 

recognizing its intact. False positives (FP) and false negatives (FN), on the other hand, remind us that 

scientific tools are not perfect. A false positive occurs when the model signals danger where there is none, 

while a false negative hides a condition that truly exists. Together, the quantities TP, FP, TN, and FN allow 

us to compute essential indicators such as accuracy, sensitivity, precision, the Area Under the Curve (AUC), 

and the F1-Score. These measures help us judge the reliability and usefulness of the model’s conclusions. 

Table 1 Confusion matrix definition 

Reference 
Predictions 

Defective Intact 

Defective TP FN 

Intact FP TN 

To evaluate the model’s performance with rigor, the 10-fold cross-validation method was employed. In this 

approach, the dataset was gently separated into ten equal portions. During each cycle, nine of these portions 

served as the training ground where the model learned, while the remaining part was reserved for testing its 

understanding. This sequence was repeated ten times, allowing the model to be tested under many different 

conditions. Each fold offered its own accuracy value and its own confusion matrix, much like repeated 

experiments that reveal subtle variations in a phenomenon. Figure 2 illustrates this process, showing how 

the rotation of training and testing parts helps us reach a more trustworthy evaluation of the model’s true 

capability (Abdullayeva & Kahramanlı Örnek, 2024). 
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Figure 2 Cross validation process 

A confusion matrix was employed to observe how well the model performed for each class, using measures 

such as Accuracy, Precision, Sensitivity, F1-Score, and AUC. These metrics help us look closely at the 

strengths and weaknesses of the model, much like examining the results of repeated experiments. The 

formulas for each of these measurements are presented in Table 2, offering a clear view of how they are 

calculated and interpreted. 

 

Table 2 Classification evaluation metrics 

Metric Formula 

Accuracy 𝐴𝑐𝑐 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

Precision 𝑃 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Sensitivity 𝑆 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

F1-Score 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 (

𝑡𝑝
𝑡𝑝 + 𝑓𝑛

) (
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
)

(
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
) + (

𝑡𝑝
𝑡𝑝 + 𝑓𝑝

)
 

AUC 𝐴𝑈𝐶 =
1

2
(

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
+

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
) 

*tp: true positive, tn: true negative, fp: false positive, fn: false negative 
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3. Results and Discussion 

This section presents experimental results to evaluate the performance of the developed system. Four 

different deep learning models—CNN, MobileNetV2, EfficientNetB0, and ResNet50—were trained and 

tested using a 10-fold cross-validation method. The confusion matrix values generated for each fold allowed 

for detailed analysis of the models' correct classification rates and error types. All models used in the study 

were trained using the transfer learning approach. This reduced the training time and increased the accuracy 

rate. In Table 3, the accuracy, precision, sensitivity, F1-score, and AUC values of all used algorithms are 

given. Figure 3 shows the confusion matrix of all four methods. 

The results of the 10-fold cross-validation applied to measure the generalization ability of the model are 

presented in the bar chart in Figure 4. 

The classification accuracy of the CNN is 94.91%. The lowest accuracy is 89.09% in the third and sixth 

folds, while it reaches 100% accuracy in the eighth fold. The standard deviation of the fold accuracies is 3.72. 

The classification accuracy of the MobileNetV2 is 92.36%. The lowest accuracy is 78.18% in the seventh 

fold, while it reaches 100% accuracy in the second and fourth folds. The standard deviation of the fold 

accuracies is 7.80. 

The classification accuracy of the ResNet50 is 95.45%. The lowest accuracy is 90.91% in the second and 

sixth folds, while it reaches 98.18% accuracy in five folds. The standard deviation of the fold accuracies is 

3.12.  

The classification accuracy of EfficientNetB0 is 96.73%. The lowest accuracy is 90.91% in the last fold, and 

it achieves 94.55% accuracy in the first fold. In three folds, the method achieves 96.36% accuracy, while in 

five folds it reaches 98.18%. The standard deviation of the fold accuracies is 2.54.  

Sensitivity, Precision, F1-score, and AUC are all 0.95, 0.96, and 0.97 for CNN, ResNet50, and 

EfficientNetB0, respectively. It demonstrates the stability of these algorithms for this problem. 

As seen in Table 3, Figure 3, and Figure 4, all four algorithms achieved satisfactory results, with 

EfficientNetB0 obtaining the highest classification accuracy at 96.73%. Figure 4 also shows that 

EfficientNetB0’s performance across folds is more balanced compared to the other models. 

MobileNetV2 performed the worst among the models. This algorithm misclassified more tiles as defective 

when they were not, resulting in a higher number of false positives. This resulted in high sensitivity as 1 and 

low precision as 0.88 values (Table 3). Figure 4 shows that MobileNetV2’s performance across folds is also 

more imbalanced. 

 

Table 3 Accuracy, precision, sensitivity, F1-score, and AUC values of all algorithms 

 Accuracy Precision Sensitivity F1-score AUC 

CNN 94.91 0.95 0.95 0.95 0.95 

MobileNetV2 92.36 0.88 1 0.94 0.94 

ResNet50 95.45 0.96 0.96 0.96 0.96 

EfficientNetB0 96.73 0.97 0.97 0.97 0.97 
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a) The confusion matrix of CNN 

  
b) The confusion matrix of MobileNetV2 

  
c) The confusion matrix of ResNet50 

  
d) The confusion matrix of EfficientNetB0 

Figure 3. Confusion matrix of methods 
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a) 10-Fold Cross Validation Results of the CNN 

 
b) 10-Fold Cross Validation Results of the MobileNetV2 

 
c) 10-Fold Cross Validation Results of the ResNet50 

 
d) 10-Fold Cross Validation Results of the EfficientNetB0 

Figure 4 10-Fold Cross Validation Results of all models 
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4. Conclusion 

In this study, the quality of ceramic tiles was analyzed. Four deep learning architectures—CNN, 

MobileNetV2, ResNet50, and EfficientNetB0—were evaluated using k-fold cross-validation. The results 

demonstrate that all models achieved satisfactory performance; however, EfficientNetB0 outperformed the 

others with the highest accuracy and the lowest performance variability across folds. EfficientNetB0 showed 

strong generalization capability, making it the most suitable architecture for tile defect detection within the 

scope of this study. 

Overall, the findings highlight the potential of deep learning-based approaches for automated tile quality 

inspection. Future work may include expanding the dataset, experimenting with additional architectures, and 

integrating real-time inference to further support industrial deployment. 
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