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1. Introduction 

The analysis of musculoskeletal movements using surface electromyography (sEMG) provides valuable 

insight into muscle activation patterns by capturing temporal, amplitude, and spectral characteristics of 

electrical activity. sEMG has become a fundamental tool in prosthetic control, human–machine interaction, 

industrial ergonomics, sports biomechanics, and neuromuscular rehabilitation, where quantitative 

assessment of muscle function is essential for understanding movement performance. 

Most studies in the literature have focused on gesture recognition, feature optimization, or improving 

classification accuracy from sEMG signals. However, the comparative evaluation of physiological 

parameters such as muscle power, energy expenditure, and activation load has often been overlooked. 

Importantly, high classification separability of a gesture does not necessarily imply greater muscular effort, 

since these two metrics depend on distinct physiological mechanisms. Therefore, evaluating both 

recognition accuracy and energy-related indices can provide a more comprehensive understanding of 

muscle efficiency, fatigue, and motor control, particularly in rehabilitation and ergonomic task design. 

 

Abstract: The analysis of musculoskeletal system movements using 

electromyography (EMG) signals is a fundamental requirement in fields such as 

prosthetic control, human-machine interaction, and neuromuscular rehabilitation. 

This study presents a comprehensive approach that not only evaluates movement 

recognition accuracy but also quantitatively assesses the level of muscle force 

required for each movement. In the study, the muscle loading profile of each hand 

movement was created using EMG signal energy normalized to the Rest state. Five 

different classifier models were compared under 5-fold cross-validation (CV) and 

Leave-One-Subject-Out (LOSO) protocols. The results showed that the Extension 

movement had the highest normalized power value and that classification accuracy 

reached its highest level with SVM-RBF (86.95%). Furthermore, Out-of-Bag 

(OOB) error analysis revealed that the model converged stably around 600–800 

trees, while accuracy differences between individuals were attributed to 

physiological variations. The proposed framework offers a new evaluation 

perspective for both ergonomic task design and clinical performance monitoring by 

assessing gesture recognition performance alongside muscle strength requirements. 
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Recent advances in sEMG-based muscle force estimation have applied to a wide variety of modeling 

strategies. Explainable modeling methods, such as the Element Description Method (EDM) proposed by 

Sodenaga et al. (2025), achieve deep neural network–level accuracy while maintaining physical 

interpretability. Deep learning–based architectures, including the two-stage LR–LSTM model by Hua et al. 

(2022), capture temporal dynamics through recurrent neural networks. Ensemble methods such as Bagged 

Tree Ensemble (Hajian et al., 2022) and Random Forest (Dick et al., 2024) have been shown to enhance 

generalization and robustness across sessions. At the same time, event-driven and low-power systems have 

been explored to improve energy efficiency; for instance, Zanghieri et al. (2025) applied Leaky Integrate-

and-Fire neuron encoding for multi-finger force estimation, achieving low latency and high energy 

efficiency. 

Hybrid models combining biomechanical and computational frameworks have also been introduced: 

Esrafilian et al. (2022) developed an sEMG-driven musculoskeletal–finite element (MS–FE) coupling to 

predict tissue-level stresses, while Dutra et al. (2021) used state-space and Kalman filtering to achieve 

continuous grip force estimation. Additionally, Su et al. (2021) proposed a deep convolutional neural 

network for interaction force estimation in human–robot interaction, and Mathieu et al. (2023) established 

a unified taxonomy to reconcile differences in biomechanical modeling terminology. Finally, optimization-

based frameworks such as the GA-optimized SVM, SVR, and RF models by Mokri et al. (2022) have 

demonstrated promising real-time potential for robotic rehabilitation control. Despite these advances, most 

of the aforementioned studies remain accuracy-oriented and do not explicitly address physiological 

interpretability, computational efficiency, or inter-subject variability. Comparative analyses of the energy 

cost and muscle activation intensity required for different gestures remain limited. Building on this gap, the 

present study introduces a power-based classification framework that jointly evaluates gesture recognition 

performance and normalized muscle activation energy. 

Ten hand gestures from forty participants were analyzed using four sEMG channels. A Normalized EMG 

Power Index (NEPI) was computed relative to resting state to quantify muscle effort objectively. 

Subsequently, time-, frequency-, and wavelet-domain features were extracted, and five classical machine 

learning algorithms—SVM-RBF, Random Forest, Bagged Trees, Linear Discriminant Analysis (LDA), and 

k-NN—were systematically compared. 

The proposed approach provides a dual perspective that integrates classification accuracy with physiological 

interpretability, offering practical value for prosthetic control, rehabilitation monitoring, and energy-

efficient movement analysis. In this respect, the study provides an innovative and comparable basis for 

both biometric identification and rehabilitation applications in sEMG-based systems. This study provides 

the following main contributions: 

➢ EMG signals collected from 40 participants performing 10 distinct hand gestures were analyzed to 

achieve power-based movement recognition. 

➢ Five classic machine learning algorithms were compared, and high accuracy was achieved. The 

study demonstrated that effective performance can be achieved without the need for deep learning. 

➢ The Extension movement proved to be the most decisive gesture, requiring the highest muscle 

power expenditure and producing the most distinctive EMG activation pattern compared to other 

movements. 

➢ The proposed sEMG-based multi-class gesture recognition method reliably grades relative muscle 

load on a motion-by-motion basis and provides a practical reference for physical therapists, 

doctors, and self-rehabilitation robots in terms of ergonomic design and motion 

selection/planning. Therefore, the proposed study is expected to contribute to areas such as 

selecting appropriate movements in rehabilitation protocols and determining energy-efficient 

gesture sets in sports and human-computer interaction applications. 

Unlike previous studies that primarily focus on classification accuracy, this work integrates normalized 
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muscle power analysis into the classification framework, providing a dual assessment of recognition 

performance and physiological energy expenditure. 

The subsequent sections of this study are organized as follows: Section 2 and 3 describe the dataset, 

experimental design, and applied methods. Section 4 presents experimental results. Finally, Section 5 

concludes the study with discussions and gives ideas for future research. 

2. Detailed Examination of Analyzed Data 

The experimental dataset consists of 4-channel sEMG signals collected from 40 participants during the 

execution of 10 standardized hand gestures. The performed gestures are illustrated in Figure 1. 

 

 
Figure 1 The set of ten hand gestures performed during the experimental recording (Ozdemir et al.,2022). 

During data recording, a 4 s rest was taken before and after each gesture, followed by the relevant gesture. 

These movements were repeated in 5 cycles.  One cycle lasted 104 seconds in total. A break of 30 seconds 

was taken between each cycle. Thus, the whole data collection process took 640 seconds in total The raw 

sEMG signals were recorded at 2000 Hz. The amplitude of the signals was between -10 and 10 mV and 

each hand movement was repeated in 4 channels in 5 cycles (Ozdemir et al.,2022). The data set for each 

participant contains information of size 4 × 1,280,000 (640 s data acquisition time, 2000 Hz sampling). 

Figure 2 shows the timeline of the data recording (for 1 cycle). The dataset used in this study was obtained 

from the publicly available hand gesture EMG dataset by Ozdemir et al. (2022) 

 

 

 
Figure 2 Timeline of a loop used in the data collection phase 
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When creating sEMG data sets, a series of preprocessing steps are applied to eliminate noise components 

present in the raw signals. Since sEMG signals inherently contain high noise, filtering processes are 

generally preferred to reduce the time-dependent non-stationary nature of the signal [23]. Significant 

amplitude and spectral differences may be observed between sEMG signals obtained from different 

individuals or from different sessions in the same individual. Therefore, normalization is necessary to 

reduce individual variability between data and ensure comparability. Normalization was performed by 

dividing each activation segment by the corresponding rest-phase RMS amplitude for each channel, 

converting amplitudes to a percentage of resting activity. In this study, Z-score normalization was applied 

to standardize the distributions of the obtained features. Furthermore, to shorten the model training time 

and increase prediction accuracy, only the sEMG segments where muscle activation occurred were 

considered. Signal segments where the muscle was at rest were removed from the data; in this context, 4-

second rest segments were filtered out of the dataset, and only 6-second activation periods were included 

in the analysis.  

In this study, the term Rest refers to two different contexts: 

(i) Physiological rest periods — 4-second intervals recorded before and after each gesture, which were 

excluded from model training to focus on active muscle segments. 

(ii) Rest gesture — a specific movement class representing a voluntary relaxation posture included in 

the classification process. This distinction is illustrated in Figures 1 and 2. 

 

 
Figure 3 Location of sEMG channels and ground electrode showing posterior and anterior views of the right forearm (Ozdemir 

et al.,2022). 

 

The electrode placement shown in Fig. 3 is critical for ensuring the reliability and reproducibility of sEMG 

recordings. Proper channel localization over the flexor and extensor muscle groups allows accurate 

detection of activation patterns associated with each hand gesture. This configuration minimizes cross-talk 

between adjacent muscles and provides a balanced representation of forearm muscle activity, which is 

essential for both power analysis and gesture classification accuracy. 

3. Power Analysis and Classification Process 

The main aim of this section is to describe the complete analysis workflow, including preprocessing, feature 

extraction, and classification. Each participant performed 10 distinct hand movements—rest, extension, 

flexion, ulnar deviation, radial deviation, grasp, abduction, adduction, supination, and pronation—each 
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repeated five times for consistent signal acquisition. All analyses were performed in MATLAB R2024b on a 

Windows 11 system (Intel i9, 64 GB RAM). 

3.1 Preprocessing  

Signals are normalized based on power levels, using the resting phase as a reference in each movement cycle. 

The resulting Normalized EMG Power Index indicates how much additional muscle energy each gesture 

requires relative to the resting state. sEMG signals were filtered using a 6th-order Butterworth bandpass 

filter (20–450 Hz) to remove power-line interference and motion artifacts, preserving the characteristic 

energy band of EMG activity. Normalization was applied during the training and test phase, and all 

preprocessing steps (filtering, normalization, segmentation) were independently performed for each of the 

four sEMG channels. 

In this process, the normalized EMG power index was quantitatively calculated by dividing the mean squared 

amplitude of the EMG signal for each gesture by that of the resting phase. This computation expresses 

muscle activation intensity as a relative energy ratio, allowing power-based comparison across gestures.   

3.2 Feature Extraction 

To represent the multidimensional nature of sEMG signals, a rich feature set has been extracted in both time 

and frequency domains. All these features have been combined, and the characteristics of the four channels 

for each hand movement have been represented as a single vector. Thus, a feature matrix rich in both 

amplitude and spectral content has been created. The obtained features were normalized to the [0–1] range 

using the min–max scaling method to prevent numerical values of different magnitudes from adversely 

affecting the classification process.  

3.2.1 Time Domain Features  

The study, we used 5-time attributes commonly used in the literature: waveform length, mean absolute 

values, root mean square, zero crossings, slope sign change. Time-domain features quantify the amplitude 

and fluctuation characteristics of the signal. Below are the time-domain feature extraction formulas used in 

our study. x = [x₁, x₂, ..., xₙ] represents a signal sequence consisting of a total of N samples. 

Feature 1 Waveform length (WL) represents the total amount of absolute deviation in the signal within a 

given analysis window, providing information about signal complexity and muscle activity intensity.  WL 

indicates the complexity of the signal by calculating the total change in the waveform: 

WL = ∑ |𝑥𝑖+1 − 𝑥𝑖|𝑁−1
𝑖=1          (1) 

Here, x[i] is the ith sample, N is the window length. This feature measures the amount of variation in the 

signal amplitude. 

 Feature 2 Mean Absolute Value (MAV) calculates the average of the signal’s absolute values and provides an 

estimate of the overall amplitude level of muscle contraction. 

𝑀𝐴𝑉 =  
1

𝑁
 ∗  ∑ |𝑥𝑖|𝑁

𝑖=1         (2) 

Feature 3 Root Mean Square (RMS) measures the effective magnitude of the signal and reflects the power of 

the muscle activation during movement. This feature reflects the signal power by emphasizing the effect of 

high-amplitude samples. 

𝑅𝑀𝑆 =  √( (1/𝑁) ∗  ∑ 𝑥ᵢ²𝑁
𝑖=1  )       (3) 
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Feature 4 Zero Crossing (ZC) counts how many times the signal crosses the zero axis, indicating the frequency 

of polarity changes related to muscle contraction dynamics. The threshold value (ε) is usually selected as a 

small number to prevent false crossings caused by noise. 

𝑍𝐶 =   ∑ [𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟((𝑥ᵢ ∗  𝑥ᵢ₊₁ <  0)  ∩  |𝑥ᵢ −  𝑥ᵢ₊₁|  ≥  𝜀)]𝑁−1
𝑖=1     (4) 

Here, the [indicator(·)] function returns 1 if the condition inside is true, and 0 otherwise. 

Feature 5 Slope Sign Change (SSC) measures the number of times the slope of the signal changes sign, 

describing rapid variations in signal shape caused by muscle activation patterns. The threshold value (ε) is 

again used to ignore small oscillations. 

𝑆𝑆𝐶 =   ∑ [𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟( (𝑥ᵢ −  𝑥ᵢ₋₁)  ∗  (𝑥ᵢ −  𝑥ᵢ₊₁)  ≥  𝜀 ) ]𝑁−1
𝑖=2      (5) 

Here, the [indicator(·)] function returns 1 if the condition inside is true, and 0 otherwise. In the above 

formulas; N: The total number of samples (data points) in the signal, xᵢ: The i-th sample of the signal, ε 

(epsilon): A small positive threshold value determined to account for noise, Σ (Sigma Sum): Represents the 

sum symbol, ∩ (Intersection): Represents the “AND” logical operator (both conditions must be satisfied 

simultaneously)  

3.2.2 Frequency Domain Features 

In the frequency domain, the average frequency, median frequency, and spectral entropy were calculated 

using the Welch power spectral density method; this provided information about muscle fatigue and 

frequency band distribution. Additionally, the 20–450 Hz range was divided into four subbands (20–80, 80–

150, 150–250, and 250–450 Hz), and the subband powers were determined for each band. 

Feature 6 Welch Power Spectral Density estimates the spectral energy distribution of the signal using the Welch 

method, where the power spectral density P(f) characterizes the dominant frequency components of the 

EMG activity. 

𝑓𝑚𝑒𝑎𝑛 =
Σ𝑓𝑓𝑃(𝑓)

Σ𝑓𝑃(𝑓)
         (6) 

𝑓𝑚𝑒𝑑 = ∫ 𝑃(𝑓)𝑑𝑓
𝑓𝑚𝑒𝑑

0
=

1

2
∫ 𝑃(𝑓)𝑑𝑓

𝑓𝑚𝑎𝑥

0
      (7) 

𝐻𝑠𝑝𝑒𝑐 = − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖),𝑀
𝑖=1  𝑝𝑖 =

𝑃(𝑓𝑖)

Σ𝑓𝑃(𝑓)
      (8) 

𝐵𝑃𝑎,𝑏 = ∫ 𝑃(𝑓)𝑑𝑓
𝑏

𝑎
         (9) 

Here, fmean represents the average frequency, fmed represents the median frequency, Hspec represents the 

spectral entropy, and BPa,b represents the power energy in specific sub-bands. 

3.2.3 Time-Frequency Domain Features 

To increase temporal-frequency resolution, wavelet transform was used; as a result of four-level 

decomposition with the symlet4 wavelet, the energy content of the signal was calculated in the A4, D4, D3, 

D2, and D1 components, and the relative energy ratio of each band was determined. This method enabled 

the precise differentiation of energy distributions for different muscle activities. 

Feature 7 Wavelet Energy Ratio is obtained by decomposing the sEMG signal x(t) into four levels using the 

sym4 wavelet and calculating the relative energy in each sub-band to capture frequency-dependent muscle 

activation. Since all sub-bands have different sampling rates, reconstruction was not performed; instead, 
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their energy ratios were directly calculated. 

The energy of each component: 

𝐸𝐷𝑖 = ∑ 𝐷𝑖(𝑛)2𝑁
𝑛=1         (10) 

𝐸𝐴4 = ∑ 𝐴4(𝑛)2𝑁
𝑛=1          (11) 

Relative energy coefficients: 

𝐸𝑟𝑒𝑙,𝑖 =
𝐸𝑖

Σ𝑗(𝐸𝑗+𝐸𝐴4)
         (12) 

These values represent the energy distribution of the signal in the time-frequency domain. 

3.2.4 Hjorth Parameter 

Feature 8 Hjorth Parameters consists of three statistical descriptors (activity, mobility, and complexity) that 

represent the variance, frequency content, and structural variability of the signal, respectively. 

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑉𝑎𝑟(𝑥)         (13) 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝑉𝑎𝑟(𝑥̇)

𝑉𝑎𝑟(𝑥)
         (14) 

𝐶𝑜𝑚𝑙𝑒𝑥𝑡𝑦 =  
√

𝑉𝑎𝑟(𝑥̈)

𝑉𝑎𝑟(𝑥̇)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦
         (15) 

These parameters characterize the distribution and structural complexity of the variance-based frequency 

components of the signal. 

3.2.5 Auto Regressive Coefficients 

Fourth-order autoregressive (AR(4)) coefficients were added to the feature set in order to capture the short-

term autocorrelation structure of the sEMG signal. 

Fourth-order AR model: 

𝑥𝑛 = − ∑ 𝑎𝑘𝑥𝑛−𝑘 + 𝑒𝑛
4
𝑘=1         (16) 

Here, the ak AR coefficients are the en white noise terms. The AR coefficients reflect the short-term 

autocorrelation structure of the signal. 

For each channel, 25 features were computed: 

• 5 wavelet energy ratios (A4, D4, D3, D2, D1) 

• 5 time-domain features (RMS, MAV, ZC, SSC, WL) 

• 3 Hjorth parameters (activity, mobility, complexity) 

• 1 total bandpower (20–450 Hz) 

• 3 Welch spectral descriptors (mean frequency, median frequency, spectral entropy) 

• 4 sub-band powers (20–80, 80–150, 150–250, 250–450 Hz) 

• 4 AR(4) coefficients 
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3.3 Feature Selection 

A total of 100 features (25 per channel × 4 channels) were extracted. Among these, the mRMR algorithm 

selected the top 20 most informative features. 

 
Figure 4 Top-20 most relevant features (mRMR) 

Each feature was calculated independently for the four channels, and channel identifiers (e.g., RMS_CH1, 

RMS_CH2) were preserved to retain spatial information regarding flexor and extensor muscle activation. To 

reduce redundancy and identify the most discriminative attributes, the minimum redundancy–maximum 

relevance (mRMR) algorithm was applied to the complete feature set. This algorithm selects features with 

the highest mutual information with class labels while minimizing correlation among features, ensuring an 

optimal balance between relevance and uniqueness. Figure 4 illustrates the importance of the scores of the 

top 20 features selected by mRMR. The X-axis represents the original feature indices rather than sequential 

order. The analysis showed that time-domain features (RMS, MAV, WL, ZC, SSC) and frequency-domain 

features (spectral entropy and sub-band powers) provided the strongest discriminative power. Additionally, 

wavelet energy components and Hjorth mobility and complexity parameters contributed significantly to 

gesture separability, highlighting that the proposed feature set captures both temporal and spectral 

characteristics of muscle activation. 

Overall, the selected features provide an information-rich representation of sEMG signals, improving both 

the discriminability and physiological interpretability of the classification model. The mRMR algorithm 

identified the 20 most informative features out of the 100 extracted features. All selected features originated 

from Channel 1, indicating that this channel carried the most discriminative information. The selected 

features included time-domain descriptors (RMS, MAV, WL, ZC, SSC), wavelet energy ratios, spectral 

measures, sub-band powers, and AR(4) coefficients. 

Table 1 lists the Top-20 most informative features selected by mRMR together with their associated channels 

and feature categories. Interestingly, all selected features originated from Channel 1, indicating that this 

channel carried the most discriminative information for gesture classification. The selected subset includes 

time-domain characteristics (RMS, MAV, WL, ZC, SSC), wavelet energy ratios (A4–D3), Hjorth mobility, 

Welch spectral descriptors (mean/median frequency, entropy), sub-band powers (20–450 Hz), and AR(4) 

coefficients, demonstrating that both temporal and spectral attributes contributed to discriminative 

performance. 
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Table 1. Top-20 Features Selected by the mRMR Algorithm 

Rank Feature Index Channel Feature Category Feature Name 

1 10 CH1 Time-domain Waveform Length (WL) 

2 24 CH1 AR(4) AR coefficient a3 

3 15 CH1 Spectral (Welch) Mean Frequency (fmean) 

4 19 CH1 Sub-band Power Bandpower 80–150 Hz 

5 3 CH1 Wavelet Energy Ratio D3 energy ratio 

6 14 CH1 Bandpower (Total) Total Bandpower 20–450 Hz 

7 9 CH1 Time-domain Slope Sign Change (SSC) 

8 1 CH1 Wavelet Energy Ratio A4 energy ratio 

9 18 CH1 Sub-band Power Bandpower 20–80 Hz 

10 22 CH1 AR(4) AR coefficient a1 

11 7 CH1 Time-domain Mean Absolute Value (MAV) 

12 2 CH1 Wavelet Energy Ratio D4 energy ratio 

13 20 CH1 Sub-band Power Bandpower 150–250 Hz 

14 8 CH1 Time-domain Zero Crossing (ZC) 

15 4 CH1 Wavelet Energy Ratio D2 energy ratio 

16 16 CH1 Spectral (Welch) Median Frequency (fmed) 

17 12 CH1 Hjorth Hjorth Mobility 

18 21 CH1 Sub-band Power Bandpower 250–450 Hz 

19 17 CH1 Spectral (Welch) Spectral Entropy 

20 6 CH1 Time-domain Root Mean Square (RMS) 

4. Results and Discussion  

The SVM-RBF model achieved the highest accuracy at 86.95%, whereas the Random Forest and Bagged 

Trees models reached 84.85% and 85.45%, showing comparable performance. The LDA model 

demonstrated the highest generalization ability in the LOSO scenario. The study calculated normalized 

average power values for each gesture and compared them relative to the resting state. This determined how 

much power each movement demanded from the muscles. The results obtained showed that the 

“Extension” movement had a significantly higher normalized power value compared to other gestures. This 

finding demonstrates that sEMG-based muscle loading analysis is an effective method for revealing 

movement-based energy requirements. 

4.1 EMG Power Analysis 

To comparatively examine the muscle activation level and energy requirements of each hand movement, the 

energy values obtained from sEMG signals were normalized relative to the resting state. This approach 

allowed the activation intensity of different muscle groups to be evaluated proportionally based on rest, thus 

revealing statistically significant physiological strength differences between movements. The normalized 

EMG power values not only showed how muscle loading changed depending on the type of movement but 

also supported the biomechanical consistency of the classification results. 
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Table 2. Relative muscle power requirements based on normalized EMG signal energy for each gesture. 

No GestureName Normalized Mean Power 

1 Rest 1.00 

2 Extension 45.76 

3 Flexion 4.79 

4 Ulnar Deviation 8.77 

5 Radial Deviation 6.39 

6 Grip 1.93 

7 Abduction 10.43 

8 Adduction 3.79 

9 Supination 2.14 

10 Pronation 2.17 

 

Each value represents the average normalized power computed over 40 participants × 5 repetitions = 200 

activation segments per gesture. The normalized power values represent the mean EMG energy of each 

gesture relative to the resting state (Rest = 1.00). Higher values indicate greater muscle activation and energy 

expenditure. As summarized in Table 2, the Extension gesture exhibited the highest normalized mean EMG 

power (45.76), indicating that it required the greatest muscle activation among all movements. In contrast, 

gestures such as Grip and Supination showed relatively low power values, reflecting minimal muscle energy 

expenditure. 

4.2 Classification Performance 

Multiple classification algorithms were evaluated to determine the most effective model for movement 

detection. The Random Forest (RF) classifier, implemented as a set of 800 decision trees with a minimum 

leaf size of 1 and Gini impurity as the splitting criterion, achieved high accuracy under 5-fold cross-validation 

(CV). The number of predictors sampled at each split was determined as √p, where p represents the total 

number of features. Furthermore, RF provided feature importance rankings, revealing the relative 

contribution of each feature to gesture discrimination. 

To evaluate model generalization, RF was compared with four additional algorithms: Support Vector 

Machine with Radial Basis Function kernel (SVM-RBF), Bagged Trees, Linear Discriminant Analysis (LDA), 

and k-Nearest Neighbors (k-NN). For the SVM-RBF classifier, the kernel scale (γ) and kernel constraint (C) 

parameters were optimized using a Bayesian hyperparameter search with 3-fold internal CV over the ranges 

γ ∈ [10⁻³, 10³] and C ∈ [0,1, 100]. The Bagged Trees model was trained with 400 learning cycles. LDA used 

a linear discriminant kernel, and k-NN was configured with k = 7 neighbors and standardized features. Both 

5-fold CV and LOSO protocols were applied for all classifiers. CV accuracy measured overall recognition 

performance, while LOSO accuracy evaluated the model's ability to generalize to unseen participants. 

The performance of the proposed structure was comprehensively tested using multiple machine learning 

algorithms under five-fold cross-validation (5-fold CV) and LOSO protocols to evaluate both the accuracy 

and generalization capability of the model. This evaluation aimed to reveal the model's consistency on data 

obtained from different participants and the generalizability of the features. Cross-validation measured 

statistical stability within the dataset, while LOSO analysis enabled the evaluation of subject-independent 

performance. Thus, the proposed method was analyzed not only in terms of in-dataset accuracy but also in 

terms of subject-independence. Table 3 compares the performance of five different machine learning 

algorithms under both 5-fold cross-validation (CV) and leave-one-subject-out (LOSO) validation schemes. 
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Table 3. Average Performance of Different Classifiers 

No Classifier CV mean (%) CV Std. (%) LOSO mean (%) LOSO Std. (%) 

1 SVM-RBF 86.95 1.87 62.35 11.63 

2 Bagged Trees 85.45 0.99 66.75 13.36 

3 Random Forest 84.85 0.63 66.80 13.37 

4 LDA 77.25 2.65 69.65 13.55 

5 kNN 71.35 2.67 50.40 11.22 

According to the results, the SVM-RBF model achieved the highest accuracy with a CV mean of 86.95%, 

demonstrating that the RBF kernel effectively captures nonlinear distinctions in EMG power-based features. 

The Bagged Trees and Random Forest algorithms achieved accuracies of 85.45% and 84.85%, respectively, 

confirming that ensemble-based approaches are highly effective for power-driven gesture recognition. In the 

LOSO scenario, although overall accuracy decreased—as expected due to inter-subject variability—the LDA 

model exhibited the highest generalization ability with 69.65%, suggesting that its low-complexity structure 

and linear boundaries can better tolerate physiological variability across individuals. Overall, ensemble-based 

models (Bagged Trees and Random Forest) demonstrated strong short-term learning performance, while 

SVM-RBF provided the highest overall classification accuracy. In contrast, the generalization capability of 

LDA under LOSO validation highlights the importance of balancing accuracy and adaptability in real-world 

EMG-based recognition systems. Future studies should explore hybrid or ensemble model combinations to 

jointly optimize accuracy and subject-independent generalization performance. 

 

Figure 5 Normalized confusion matrix (SVM_RBF – 10 gestures) 

 
Figure 5 shows the normalized confusion matrix obtained from the SVM_RBF classifier trained using the 
extracted sEMG features. The rows represent the actual movement classes, while the columns represent the 
predicted classes. The high values of the diagonal elements for most gestures indicate that the model has 
achieved high discriminative success. In particular, the accuracy rates for Extension, Flexion, and Abduction 
movements were observed to be significantly high. 
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Misclassifications are generally concentrated among movements with similar muscle synergies (e.g., Ulnar 

Deviation and Radial Deviation); this is due to the physiological overlap of muscle activation patterns. 

Overall, these results demonstrate that the proposed feature set provides sufficient discriminative power in 

the time–frequency domain and is reliable for multi-gesture recognition.  

Figure 6 shows the distribution of F1-scores obtained for ten different hand movements. The F1-scores in 

Figure 6 correspond to the SVM-RBF classifier, which achieved the highest CV accuracy. The F1-score is a 

combined measure of precision and recall metrics, reflecting the balance between false positive and false 

negative rates for each class. The fact that the F1 scores are close to 1 for movements such as Extension and 

Abduction indicates that the model makes highly accurate predictions, while the relatively low scores for 

movements such as Grip and Pronation indicate uncertainties related to class overlaps. These findings 

confirm that the proposed community-based classifier demonstrates robust generalization capabilities by 

maintaining the sensitivity-specificity balance across different gestures. The figure shows that the highest F1 

value was obtained for Extension, followed by Flexion and Supination. Ulnar Deviation, Radial Deviation, 

Grip, Abduction, and Pronation were in the middle range, while the lowest F1 values were observed in the 

Adduction and Rest classes. This distribution indicates that classes with strong and consistent patterns are 

recognized more reliably, whereas confusion persists in opposing pairs (e.g., Abduction–Adduction, 

Supination–Pronation) due to similar muscle synergies. 

 
Figure 6 Per-class F1-score 

 

Figure 7 shows the Out-of-Bag (OOB) error rate changing as each decision tree is added during the training 

of the SVM_RBF model. Although 20 mRMR features were used for classification comparison, Figure 7 

illustrates the SVM_RBF model trained on the full feature set (100 features) to present its ensemble 

convergence behavior. OOB analysis is a built-in evaluation method that directly measures the model's 

generalization performance and is calculated by taking the average of prediction errors made on samples not 

used during training. The graph shows that the OOB error rate decreases rapidly as the number of trees 

increases and that the error curve stabilizes after approximately 600–800 trees. This indicates that the model 

has reached sufficient learning capacity and that adding more trees does not provide a meaningful 

improvement in accuracy. The obtained curve form clearly reveals the convergence behavior of the model 

and confirms that it does not show an overfitting tendency. Thus, it is concluded that the ensemble structure 

consisting of 800 trees provides an optimal balance in terms of both classification performance and 

computational cost. 
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Figure 7 Model learning behavior 

In Figure 8, the Extension movement exhibited the highest normalized power values showed the highest 

normalized power values with a high median and long upper tail. Abduction exhibits a wide intra-class 

variance along with a medium median. Flexion, UlnarDev, RadialDev, and Grip have lower and more 

compact power distributions. As expected, the Rest class remained at the baseline level. The power profiles 

indicate high discriminability potential, particularly for Extension, while the wide variance in Abduction 

suggests possible class boundary uncertainty. 

 

 
Figure 8 Gesture-wise normalized EMG power (Rest=1, boxplot) 
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Figure 9 Per-subject Accuracy (CV) 

 

Figure 9 presents the participant-wise accuracy values, revealing a wide dispersion in the range of ~42%–

80%.  A clustering is observed in a cluster of participants within the 70–80% range and a long tail extending 

toward 40–60% accuracy. This pattern indicates that electrode placement and skin impedance differences, 

along with individual muscle activation patterns, significantly affect classification performance, thus 

demonstrating that subject-specific variance is a dominant error component in subject-independent 

generalization. The LOSO approach is a protocol where each subject's data is sequentially separated as a test 

set and the model is trained on the data of all other participants, aiming to evaluate the model's individual-

independent generalization capacity. As seen in the graph, accuracy rates show significant differences 

between participants. While the highest accuracy is achieved in the range of 78–80%, performance has been 

observed to drop to levels of 45–50% in some participants. This variation stems from physiological factors 

such as inter-individual muscle activation patterns, electrode placement, skin resistance, and biomechanical 

differences. In particular, the high accuracy rates of participants S17, S10, and S29 indicate that muscle 

activation during the movements of these individuals is more consistent and pronounced; in contrast, the 

low accuracy values of other participants suggest factors such as increased signal noise or low contraction 

strength. 

Overall, these results demonstrate that the proposed model can tolerate moderate inter-subject variability; 

however, personalized calibration or adaptive normalization strategies could further enhance its robustness 

and generalization in future applications. 

5. Conclusions 

This study demonstrates that the proposed power-based framework can effectively capture both the 

physiological and computational aspects of muscle activity during different hand gestures. The normalized 

power index provided a quantitative means of comparing the relative energy demand of movements, 

revealing distinct activation patterns that reflect underlying biomechanical complexity. The findings indicate 

that gesture classification accuracy is influenced not only by algorithmic efficiency but also by individual 

differences such as muscle morphology, electrode placement, and skin impedance. These results highlight 

the importance of integrating physiological interpretability into performance evaluation rather than relying 
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solely on accuracy metrics. The proposed approach contributes to bridging the gap between signal-based 

classification and muscle-level energy assessment, offering a more holistic understanding of motor control 

in sEMG-based systems. Nevertheless, the study was conducted using data from 40 participants and four 

EMG channels, which may limit its generalization to high-density or dynamic recording conditions. Future 

work should focus on validating the method in larger, more heterogeneous datasets and exploring adaptive 

feature selection strategies to improve real-time robustness. 
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