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1. Introduction

Genetic Algorithm (GA) is a population-based metaheuristic optimization method inspired by evolutionary
processes observed in nature. Originally introduced by John Holland (Holland, 1992), this approach aims to
solve a given optimization problem through an iterative computational process based on biological
mechanisms such as natural selection, genetic crossover, and mutation. One of the most critical aspects of
the algorithm is the establishment of a fitness evaluation mechanism that mimics the evolutionary principle
wherein individuals better adapted to environmental conditions have a higher chance of survival and gene
propagation. Accordingly, a fitness (objective) function must be defined in a way that both satisfies system
requirements and respects problem-specific constraints. Individuals in the population are evaluated

throughout various stages of the algorithm based on the values obtained from this function.

The algorithm begins with a population composed of individuals, each representing a potential solution to
the given problem, and the initial fitness scores of these individuals are calculated based on the defined
objective function. Following this initial stage, the iterative process begins. At the start of each iteration, a
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subset of individuals is selected based on their fitness scores. These selected individuals are then subjected

to small variations through various genetic operators in order to explore potentially better solutions.

By the end of the iteration, a new generation is formed, which is expected to contain better alternatives in
terms of overall solution quality. This new generation is referred to as the "offspring" while the generation
at the beginning of the iteration is called the "parents". The fitness scores of the offspring are recalculated,
and the individuals are reassigned as parents for the next iteration. This process continues until a satisfactory

solution is reached or a predefined number of iterations is completed.

GAs have been widely applied across various fields—from engineering to economics—due to their strong
global search capability and effectiveness in solving complex problems that are multimodal, nonlinear, or
subject to multiple constraints. This broad range of applications is evident in numerous studies, including
optimal power flow in electrical grids (Bakirtzis et al., 2002; Osman et al., 2004), parameter tuning in control
systems (J. Zhang et al., 2009), feature selection in machine learning (Halim et al., 2021; Smith & Bull, 2005),
scheduling and routing optimization in manufacturing systems (Gen & Cheng, 1999), financial forecasting
(Kim & Han, 2000) and supply chain and inventory management (Disney et al., 2000).

The generation update phase performed at the end of each iteration ("Survivor Selection” or "Replacement™)
is not explicitly defined in the structure of the classical GA. More precisely, in the standard approach, no
special method is applied during this phase; instead, the new generation (offspring) simply replaces the
previous one (parents). However, this can result in the loss of potentially high-quality individuals from the
earlier population, thereby slowing down the overall optimization process. To address this issue, various
methods have been proposed in the literature in which certain individuals from the previous generation atre
preserved and transferred to the next generation either directly or through a specific selection process. These
approaches are generally classified under the concept of "elitism" (Du et al., 2018).

Studies in the literature generally have focused on the key components of genetic algorithms—such as
selection, crossover, and mutation operations—that significantly affect their performance (Alhijawi &
Awajan, 2024; Ali et al., 2020; Hassanat et al., 2019; Hong et al., 2002; Katoch et al., 2021; F. Zhang et al.,
2008). In contrast, generation update strategies are often treated as a fixed structural component and are
rarely subjected to detailed analysis. In several existing studies, replacement methods are typically introduced
as part of a newly proposed GA variant (Ahn & Ramakrishna, 2003), rather than being independently
evaluated or compared with alternative approaches. In the limited number of studies that do involve
comparisons, evaluations are mostly conducted using standard test functions (Brouwer et al., 2022), which

often fail to reflect the dynamic and constrained nature of real-world optimization problems.

In this study, the effects of different replacement strategies used in genetic algorithms were systematically
compared in the context of solving the equations of the Selective Harmonic Elimination (SHE) method,
which represents a real-world optimization problem. SHE is one of the most widely used control techniques
in multilevel inverters (MLIs). The primary goal of this method is to eliminate specific harmonic components
in the inverter output voltage while keeping the fundamental harmonic amplitude as close as possible to a
desired reference value. To achieve this, mathematical expressions are derived for the relevant harmonics,
where the switching angles are defined as variables. Satisfying all objectives simultaneously requires
determining the optimal set of switching angles that solve these equations concurrently (Yang et al., 2017).
However, due to the nonlinear structure and trigonometric nature of the equations, solving SHE becomes

increasingly challenging as the number of inverter levels rises.

Within this scope, six genetic algorithm variants were investigated; one with a standard structure and no
replacement applied, and the remaining five employing different generation update mechanisms. The

algorithms were tested under four different scenarios composed of various combinations of population sizes
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and iteration counts, with independent runs conducted for each. The results were evaluated using key
statistical metrics such as Best, Median, Worst, and Std (standard deviation), along with boxplot
visualizations. Additionally, the solutions obtained were applied to the switching devices of a multilevel
inverter modelled in MATLAB/Simulink, and the algorithms were further assessed based on fundamental
component error and harmonic suppression performance in the output voltage.

The findings of this study reveal that while elitist strategies used during the replacement phase positively
impact GA performance, they also pose a risk of reducing population diversity in scenarios with limited

resources, such as low population sizes and restricted iteration counts.

In such cases, the rapid dominance of elite individuals within the population may lead to the premature
elimination of individuals with relatively poor fitness but potential for long-term convergence to the global
optimum. As a result, the algorithm’s overall exploratory ability weakens, and the likelihood of getting
trapped in local minima increases. On the other hand, diversity-oriented approaches help mitigate this risk
under resource-constrained conditions and enable a more effective exploration of the solution space. These
results indicate that the replacement strategy chosen should not only preserve high-quality individuals but
also maintain a balanced structure that sustains diversity depending on the problem environment.

2. Switching Angle Determination via SHE in CHB-MLI Systems

In conventional two-level inverters, the output voltage is generated by switching between only two fixed
levels, typically +Vdc and —Vdc. In such systems, power switches are operated at high switching frequencies
to rapidly alternate the output voltage between these two levels, aiming to approximate an ideal sinusoidal
waveform. While this configuration is simple and cost-effective—due to its ability to operate with a single
DC source and requiring fewer semiconductor components—it also presents some significant disadvantages
(Bertin et al., 2023). Since the switches must handle high voltage levels during every transition, the lifespan
of components is reduced, and the overall reliability of the system is compromised. Moreover, high switching
frequencies considerably increase switching losses and electromagnetic interference (EMI).

To overcome the issues observed in conventional two-level inverter structures, various MLI topologies have
been developed (El-Hosainy et al., 2017). The core approach of these topologies is to generate the output
voltage in a stepwise manner using multiple intermediate voltage levels, thereby producing a waveform that
resembles a staircase. As a result, semiconductor devices switch lower voltage levels in each cycle, and this
switching occurs only twice per half-cycle. Consequently, the need for high switching frequencies is reduced,
which significantly minimizes losses, voltage stress on components, and EMI

Among MLI topologies, one of the most widely adopted structures is the Cascaded H-Bridge Multilevel
Inverter (CHB-MLI) (Sunddararaj et al., 2020). In this topology, multiple H-bridge inverter modules—each
with identical specifications and supplied by an independent DC source—are connected in series. Each
module contributes one voltage level to the staircase-shaped output waveform (Dahidah et al., 2015). As the
number of modules increases, the number of steps in the waveform also increases, resulting in an output
voltage that more closely approximates a sinusoidal form. In addition to the conventional advantages offered
by multilevel inverters, the CHB-MLI topology provides a significant benefit in terms of structural
modularity. Thanks to this modularity, the system can be easily reconfigured by adding or removing a module
when a change in output voltage level is required. Furthermore, in the event of a fault or maintenance need,
the affected module can be isolated and replaced without interfering with the entire system. This reduces

maintenance time, simplifies servicing, and enhances overall system reliability.

In the CHB-MLI topology, the output voltage waveform is defined by the switching angles that determine
when each module contributes to the output. Since each module generates one voltage level in the staircase
waveform, the number of switching angles corresponds to the number of modules used. Therefore, a system
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with n modules requires n switching angles (6, 85, ..., 8,). To accurately compute these angles, n independent
equations are needed. method provides a systematic approach for determining these angles (Lingom et al.,
2024). Among the resulting n equations, one is formulated to match the fundamental component of the
output voltage to the desired reference value, while the remaining n — 1 equations are each constructed to
eliminate a specific harmonic component. As a result, harmonic control in the SHE method emerges both

as a direct objective and as a natural outcome of the switching angle calculation process

In this study, the CHB-MLI configuration under consideration is a single-phase, 11-level inverter.
Accordingly, five (n = 5) H-bridge inverter modules are employed, each supplied by a DC voltage source of
50 V. The output voltage waveform presented in Figure 1 illustrates the stepwise structure formed by the
contribution of each module. Here, V, (x = 1,2,3,4,5) represents the output voltage of the corresponding
module. Each module is activated at its respective switching angle 8, adding its voltage to the existing total
and thereby increasing the output voltage to the next level. This process continues sequentially during each
quarter-cycle, resulting in the desired multilevel voltage profile.

Vi+V2+V3+Va+Vs —CHB-MLI Output

250 — —
Vi+V2+V3+Va

200 -

150 l/‘1+l/2+l/'3E

100

50

-50
-100

-150

-200

-250

i P : | |
06,6, 6586, 6 n/2 n 3n/2 2n

Figure 1 The Output Voltage Waveform for a Single-Phase CHB-MLI

Under the assumption of half-wave symmetry, even-order harmonic components are inherently eliminated
from the output voltage waveform as shown in the figure. Furthermore, assuming that all DC sources are
equal, a general expression can be defined for each odd harmonic component present in the output voltage.
In this equation, h and V}, represent the order of the odd harmonics in the output voltage (h = 1,3,5 ...) and
the amplitude of the h*" harmonic component, respectively. 8; denotes the i*" switching angle (i = 1,2,3,4,5).

5

4V,

v, = 7DTC Z cos(h6;) M
i=1

h

Within the scope of the SHE method, an algebraic system of equations is derived from the general expression
above to regulate the desired fundamental component level in the output voltage while suppressing
undesired harmonics. These equations represent the amplitudes of the harmonic components expressed as
functions of the switching angles. Among them, one corresponds to the fundamental component (h = 1),
while the remaining four represent the amplitudes of the targeted harmonics to be eliminated (h = 3,5,7,9).
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The primary objective of the optimization algorithms examined in this study is to numerically solve this

system of equations to determine valid switching angles that satisfy the defined criteria.
3. Generation Update Strategies in Genetic Algorithms

In genetic algorithms, generation replacement (also referred to as survivor selection) is a critical phase that
determines how the newly generated population at the end of an iteration is transferred to the next
generation. This process plays a direct and essential role in preserving genetic diversity, preventing premature
convergence, and improving overall solution quality. Replacement strategies are based on different rules
regarding how the parent and offspring populations are compared, which individuals are preserved, and

which are eliminated.

In this study, several alternative replacement strategies to the classical approach were evaluated, and their
effects on the SHE problem were comparatively analyzed. Within this scope, a standard real-coded GA
framework was employed across all variants to ensure consistency. Each individual X; in the population of
size N was defined as a solution vector composed of five switching angles 6; (j = 1,2, ...,5), as expressed in
Equation 2. These angles must satisfy the constraint provided in Equation 3. In all algorithms, the selection
process was carried out using the roulette wheel method, single-point crossover was applied during the

crossover phase, and a basic mutation strategy was used.
Xi = (61,92,93,94,65) i € {1,2, ...,N} (2)
0<60,<0,<6;<6,<0;<m/2 3)

In the algorithms under investigation, the fitness function derived from the SHE equations was defined in
Equation 4 to evaluate the individuals in the population (Bektas et al., 2023). This function is formulated
based on a two-component etror structure. The first term, f;(X;), represents the difference between the
obtained fundamental component amplitude and the desired reference value (V). The second term f5(X;),
evaluates the suppression level of undesired harmonic components corresponding to the 3td, 5%, 7t and 9t
harmonic orders. During this evaluation, weighting coefficients (w = 2.5, 2, 1.5, 1) were applied to assign
greater importance to lower-order harmonics, making them a higher priority in the optimization process. As
a result, minimizing the fitness value leads to a solution where the fundamental component closely matches

the target value while the unwanted harmonics are effectively suppressed.

FxD = (A& + X)) 4)

5
4V,
fl(Xi) = Vlref _TDCZ COS(Xi,j) (5)
j=1
Wpe\2 o 1% 2
_ DC = o
fZ(XL)_( T ) kzlwk hkalcos(thl,]) (6)

h=3,579 w=25,2,15,1

The first algorithm included in the comparison, GAO1, is the standard genetic algorithm without any
replacement strategy applied. In this structure, the offspring individuals (X,rf(t)) generated through
selection, crossover, and mutation in each iteration are directly assigned as the parents of the next iteration
(Xpar(t + 1)), as shown in Equation 7, while the current iteration's parents (Xpq.(t)) are discarded. As a
result, the population is completely replaced in every generation. This technique is commonly referred to in

the evolutionary algorithms literature as the (u, A) selection strategy.
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XP(t+1) = X/ (£), FPY (t + 1) = FOIT(¢t) )

The second algorithm compared (GA02) corresponds to the structure commonly known in the literature as
the elitist GA. In this method, at the beginning of each iteration, the n best-performing individuals based on
fitness are selected and stored as elite individuals X¢ (Equation 8). At the end of the iteration, the n worst-
performing individuals X* among the offspring are identified (Equation 9) and directly replaced with the
previously saved elites (Equation 10). After this replacement, the updated offspring population—including
the elites—is used as the parent population for the next iteration, as in the standard GA. In this approach,
the elite individuals are transferred to the next generation without being subjected to any additional
comparison or selection mechanism.

Xe(t) = {X7, X5, ..., X5}

e e e (8)
A ff < h
XW(t) =X, XY, ... X%}
©)
f1W 2 fzw s 2 an
X¥ e Xg k=12,..n (10

The third algorithm (GAO03) is based on a tournament-based replacement strategy with random pairing. In
this method, at the end of each iteration, a tournament is conducted between the parent population and the
newly generated offspring population. For this purpose, as defined in Equation 10, an index array is created
by randomly selecting non-repeating integers from the range [1, N] to represent the offspring individuals.
Then, each parent individual Xip T (t) is paired and compared with the corresponding offspring individual
X ,?f ! (t) from the index array, as shown in Equation 11. The individual with the better fitness value is selected
for transfer to the next generation.

p = randperm(N) (11)

xPT@, PO < 1277 @)

par —
Xy X7 @), £ @) > £ ()

i=12,..,N(k=p;) (12)

The fourth algorithm (GA04) adopts a roulette wheel-based replacement strategy. In this structure, the
current parent population X9 (¢t) and the newly generated offspring population X°//(t) are combined into
a unified pool X°™(t) consisting of 2N individuals (Equation 13). For each individual in this pool, selection
probabilities p; are calculated by taking the inverse of their fitness values and normalizing them, followed by
computation of cumulative selection probabilities pk; (Equation 14). Using these cumulative probabilities,
individuals corresponding to randomly generated numbers in the range [0,1] are selected, and a new parent

population Xip Tt+1) consisting of N individuals is formed (Equation 15)

xeom(e) = (X () U XTI (1) ) (13)

2N

1/f.com

b; = : Psum = Z 1/ficom
i=1

pS um

i
pki=zsz
x=1

i=12,..2N (14)
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Xi°™ 0 <rand < pk,
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= 1,2, ,N (15)
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The fifth algorithm (GAO5) is based on a ranking-based elitist replacement strategy. In this method, as shown
in Equation 13, the parent population and the newly generated offspring population are merged into a
common pool. The individuals in this pool are then ranked according to their fitness values (Equation 16),
and the best N individuals are directly selected to form the next generation population X' (¢t + 1) (Equation
17). This strategy does not involve any comparison, probability, or selection mechanism; instead, it relies
solely on absolute fitness ranking. This approach corresponds to the (u + 4) selection strategy commonly
used in evolutionary algorithms.

flcom < fzcom < 2618771 (16)
XPU(E+ D) = XM fPUTEHD = i=12,0,N &

The sixth and final algorithm (GA06) implements a partial elitism-based replacement strategy that aims to
preserve the best-performing individuals from both the parent and offspring populations while also giving
a chance to lower-performing individuals from both generations. In this method, the current parent and
offspring populations are first ranked separately according to their fitness values (Equation 18). From each
population, ¢ individuals (¢ = N/4) in the top quattile are selected to form the subsets X*(t) and X?(¢),
respectively (Equation 19). Additionally, q individuals are randomly selected from the remaining lower-
petforming individuals in each population (from the range [q + 1, N]), forming subsets X3(t) and X*(t)
(Equation 20). Finally, the union of these four subsets constitutes a combined population X°™(t) of N
individuals, which is assigned as the parent population XP4" (¢t + 1) for the next generation (Equation 21).
This approach can be considered a hybrid structure that simultaneously promotes elitism and diversity and

may be viewed as a variation of the previous replacement strategy.

< < T < < BT (18)
X () = XPU (), X2 (1) = X7 (¢) i=12,..,q (q=N/49 (19
X?(t) = {Xffr:XfZarJ ---'Xf;r} rxe{g+1,q+2,.., N} 20
Xt =l ) x x=12,..,q +
xeom) = (X1 U X2(©) UX3(0) UXH(E)) > XPO(t + 1) = XO™(t) 21)

Generation replacement strategies are designed to prevent the loss of high-quality solutions. While the
preservation of good individuals is commonly referred to as elitism in the literature, this approach also
introduces the risk of gradually losing population diversity; one of the fundamental driving forces of
evolutionary algorithms. Therefore, the balance between elitism and diversity plays a critical role in
optimization problems. In this context, the algorithms examined in this study are evaluated with respect to
their approaches to elitism and diversity as follows:

e  GAO1, which does not incorporate any elitism mechanism, completely eliminates parent individuals
after each iteration, regardless of their quality. Diversity is maintained solely through the effect of
the variation operators applied to the offspring population.

e The only difference between GA02 and the previous algorithm is the preservation of a small elite
portion (5%) of the parent population. This limited intervention introduces a mild level of elitism
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into the optimization process. However, since elite individuals are carried over to the next
generation without any comparison or competition, this may result in the elimination of potentially
superior offspring in the later stages of long-term iterations, where differences among individuals
diminish. Apart from this, diversity is maintained (as in GAO1) only through the offspring, with no
contribution from the previous generation.

e The tournament structure in GA03 ensures that individuals with better (i.e., lower) fitness values
are largely preserved in the population, indicating a strong elitist characteristic. However, because
pairings are made randomly, there is always a possibility that two weak individuals may compete
against each other. This helps prevent diversity from being completely lost and allows the partial
retention of individuals who, despite low current performance, may hold potential in the
evolutionary process.

e GAO4, which uses a roulette wheel-based selection, combines the parent and offspring populations
into a shared pool, where individuals with better fitness values have a much higher probability of
being selected for the next generation. Moreover, due to the stochastic nature of this approach, top-
performing individuals may be selected multiple times, increasing the risk of population dominance
by a few elites. Although the probability of selecting low-performing individuals is not zero, it
remains very low. Thus, compared to the tournament method, GA04 supports diversity to a lesser
extent while applying elitism in a stricter and less controlled manner.

e The principle of GAO5 is purely deterministic, with no probabilistic components involved. After
merging the parent and offspring populations, the top N individuals are directly selected to form
the next generation. The selection of the best individuals is guaranteed with 100% certainty, making
GAO5 more stable and reliable in terms of elitism compared to probabilistic approaches like roulette
ot tournament selection. However, because the selection is based on absolute ranking, even the best
individual is chosen only once. This ensures that elitism is implemented effectively yet in a balanced
way. As a result, while elite individuals are preserved, moderately fit individuals also have a chance
to remain in the system helping to sustain diversity. That said, this strategy is intolerant toward
weaker individuals: those with the worst fitness values are categorically excluded from the next
generation.

e GAOG aims to consciously balance elitism and diversity. As in GA05, the transfer of elite individuals
is guaranteed, making the elitist aspect of this approach deterministic. However, unlike GA05, the
elite individuals are selected separately from both the parent and offspring populations, and their
total proportion is lower. Moreover, diversity is not left to the natural course of the evolutionary
process; instead, it is actively promoted by applying positive selection bias in favour of weak
individuals. While this guarantees the preservation of diversity, it also deliberately restricts the spread
of elite solutions. Consequently, in long-term iterations, the suppressing effect on elite individuals
may pose a risk of stagnation in solution quality.

4. Results and Discussions

In this study, the performance of six different GA variants employing distinct replacement strategies was
compared in the context of solving the SHE equations. For this purpose, each algorithm was tested under
four different scenarios. These scenarios were structured based on combinations of population size (N) and
number of iterations (T), as outlined below:

@) N =20, T=20; ()N =20, T=100; (i) N =100, T =20; (iv) N =100, T = 100.

The primary objective of designing this scenario structure is to evaluate how the algorithms perform under
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both resource-constrained conditions (low N and T) and conditions that allow for broader search capabilities

(high N and T).

For each algorithm, 501 independent runs were performed in each scenario. In these runs, the objective
function defined in Equation 4 was used to evaluate the quality of the solutions. The reference fundamental
component amplitude (Vi) was set to 250 V. In each run, the best (i.e., lowest) fitness value achieved by
the algorithm was recorded. From the resulting set of 501 values, the performance metrics Best, Median,
Worst, and Std (standard deviation) were computed and comparatively presented in the relevant tables
(Tables 1-4)). To compare the distributions of these values, boxplots (Figures 2, 4, 6, 8) were included, and
convergence curves (Figures 3, 5, 7, 9) were used to analyse the average progress trends of the algorithms

throughout the iterations.

The results for the first scenario are presented in Table 1 and Figures 2 and 3. This scenario represents a
resource-constrained setting in which both the population size and the number of iterations are kept low.
The limited number of iterations prevents the algorithms from fully demonstrating their optimization
capabilities. Therefore, the ability to perform a fast and effective exploration of the search space becomes
critically important. In this context, the small population size places the entire burden of exploration on the

algorithm's capacity to maintain diversity.

Table 1 Optimization results for N=20 and T=20

Statistical Summary of Fitness Values

Algorithms
Best Median Worst Std
GA01 12.2832  85.3245  269.2885 47.5573
GA(2 6.9794 535927 248.0116 44.6122
GA03 5.8093 59.8713 250.0669 59.3952
GA04 6.5139 757216  266.1919 57.9014
GAO05 5.5482  88.4709  268.7646  61.6239
GA06 7.6176  48.1857  178.0961 28.7910

According to the results, GA0G6, which enforces diversity structurally by design, stands out as the most
successful algorithm in terms of both performance metrics and boxplot appearance. It is followed by GA02,
which allows diversity to emerge naturally while applying a moderate and controlled level of elitism. Although
the Median values of these two algorithms are close, GA06 exhibits a significantly lower Std value, indicating

more consistent and stable outcomes.

GAO03, which partially allows weaker individuals to survive through tournament selection, ranks just behind
these two. GA04, while not as tolerant to diversity as GAO3, still offers more flexibility than GAO5, placing
it next in line. GAO5, where elitism is dominant and diversity is neatly disregarded, performs similatly to the
standard GAO1, and in some cases even worse. Notably, the convergence curves in Figure 3b clearly show
that the final performance ranking of the algorithms aligns precisely with the extent to which each strategy
supports diversity.

The results for the second scenario are presented in Table 2 and Figures 4 and 5. This scenario represents a
longer evolutionary process combined with a small population size. This combination is particularly valuable

for observing the algorithms’ abilities to maintain diversity and their long-term convergence behaviour.
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Table 2 Optimization results for N=20 and T=100

Statistical Summary of Fitness Values

Algorithms
Best Median Worst Std
GAO01 6.5454  35.2412 99.8045  19.7326
GA02 4.6600  15.2062 54.7889  13.4916
GAO03 4.5360 14.8900 115.6199 18.8921
GA04 5.6908  30.5692  104.0617  18.7601
GAO05 4.5427 10.1239  111.7354  21.6504
GA06 5.0021  16.4486 70.5006  13.8457
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The results indicate that, compared to the first scenario, all algorithms achieved lower fitness values and the
performance differences between them became more pronounced. Analysing the boxplots and statistical
metrics, it is evident that the increased number of iterations—despite a fixed population size—enabled GA05
to reveal its potential. GAO5, which attained the lowest Median value by a significant margin, is followed by
GAO03, GA02, and GAOO, respectively. However, the differences in Median values among these three
algorithms are statistically negligible.
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Figure 5 Convergence curves of the algorithms for N=20, T=100; (a) normal, (b) magnified view

The superiority previously achieved by GA06 and GA02 due to their diversity-oriented designs appears to
have relatively diminished in this scenario, while algorithms with stronger elitist structures have begun to
take the lead. Nonetheless, the balanced distribution in the boxplots and the low Std values of these two
algorithms indicate that the positive influence of diversity is still present.

On the other hand, although GA03 and GAO5 performed well overall, their results include a substantial
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number of outliers, which contributes to their relatively high standard deviation values. This suggests that
under the current population size, elitist strategies have not yet achieved full effectiveness in eliminating low-

quality individuals.
GA04, meanwhile, lagged behind these algorithms and exhibited a performance comparable to that of GAO1.

The convergence curves cleatly reveal the optimization superiority of GA05 and the improved performance
of GAO3 compared to the previous scenario. Although GA06 and GAO02 initially take the lead thanks to the
advantages of diversity, they are eventually overtaken—first by GA03, and then by GAO5. In the final phase
of the iteration process, GA05 opens a significant gap, while the remaining algorithms conclude the process
at relatively similar performance levels.

The results for the third scenario are presented in Table 3 and Figures 6 and 7. This scenatio is defined by a
large population size combined with a limited number of iterations. Such a combination naturally provides
diversity to the algorithms but does not offer sufficient time to enhance solution quality. In this context,
unlike previous scenarios, population-induced diversity ceases to be an advantage, and elitist strategies
capable of acting quickly in the early stages come to the forefront.

This shift is most dramatically reflected in the performance of GA06. Although GA06 previously stood out
due to its structural support for diversity, it fails to maintain that advantage under this scenario. On the
contrary, the continued application of positive discrimination toward weak individuals and the limited
selection of strong ones in a large population setting effectively turns its former advantage into a
disadvantage. The decline in performance that began in the second scenario continues here as well, with
GAOG falling even behind GAO2.

On the other hand, GA05 and GAO03, which had previously appeared relatively disadvantaged due to short
evolutionary durations, are now able to realize their potential thanks to the increased population size. GA05
once again achieves the lowest Median value, as it did in the second scenario. The fact that this value is neatly
identical to that of the previous scenario suggests that for GAO5, there is little difference between having a
large population versus a high iteration count.

GAO3 follows closely behind GAO5, and the performance gap between them appears to have narrowed
considerably compared to the previous scenario. This indicates that GA03 benefits slightly more from large
population settings.

The convergence curves preserve the overall structure observed eatlier. However, a notable observation is
that GAO3 remains neck-and-neck with GAO5 until almost the end of the process. In the final few iterations,
GAO5 gains a slight edge and finishes ahead.

The results for the fourth and final scenario are presented in Table 4 and Figures 8 and 9. This scenario,
characterized by both a large population size and a high number of iterations, represents the most ideal
evolutionary conditions. This combination enables the algorithms to explore a wide solution space while
also applying effective exploitation through the selection of high-quality individuals over an extended period.

Therefore, under this scenario, the overall evolutionary performance of the algorithms is revealed in the
clearest and most balanced manner.

The results clearly demonstrate the impact of this ideal setting. GAO5 once again emerged as the most
successful algorithm, achieving the lowest Median value across all scenarios. This is further supported by its
boxplot, which exhibits a narrow structure with very few outliers, indicating that the algorithm produced
results that were not only good but also highly consistent. Additionally, GAO5 achieved the lowest Std value
by a significant margin. This confirms that the elitist strategy yields maximum efficiency when combined
with a large population and an extended evolutionary process.
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Table 3 Optimization results for N=100 and T=20

Statistical Summary of Fitness Values

Algorithms
Best Median Worst Std
GA01 5.7042  32.9837 97.1225 16.6028
GA02 49312  17.9718 61.2656 12.8229
GAO03 4.5388  12.9656 81.0595 14.1293
GAO04 4.8124  21.8115 70.5730 15.7836
GAO5 4.4754  10.3718  107.9555 19.2538
GA06 5.7045  20.8530 72.1362 13.5063
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Figure 7 Convergence curves of the algorithms for N=100, T=20; (a) normal, (b) magnified view
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Table 4 Optimization results for N=100 and T=100

Statistical Summary of Fitness Values

Algorithms
Best Median  Worst Std
GA01 4.6144  10.6678 445221  11.3218
GA02 4.3664 5.1320 41.8507  11.5785
GAO03 4.3605 5.1953 44.0698  8.9830
GA04 4.4891 8.6848 42.8013  11.4411
GAO5 4.3387  4.7604 13.9133 1.2981
GAO06 4.5438 7.5069 44.6007  12.4250
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GAO02 managed to maintain its competitiveness over the long run, owing to its initial diversity advantage and
balanced level of elitism. The performance of GA03 in this scenatio also aligns well with previous trends. In
terms of the Median metric, there is virtually no difference between GA02 and GAO03, and the gap between
either of them and GAO5 remains relatively small.

However, the main distinction becomes apparent in the standard deviation (Std) values. The Std values of
GAO02 and GAO3 are notably higher than that of GA05. Between the two, GA03 appears to have produced
slightly more consistent results. Although the boxplot of GAO2 may initially suggest a narrower spread, its
high Std value and the concentration of outliers above the box indicate greater variability in its results.

As for GAQG, the performance decline observed in previous scenarios continued. Even under this high-
population condition, its structure—designed to protect weak individuals—caused it to lag behind. GA04
also underperformed, once again falling short of expectations and ranking among the worst-performing
algorithms along with GAO1.

The convergence curves cleatly reflect the overall trend. GAO05, GAO3, and GAO02 distinctly separate
themselves from the other algorithms throughout the process. Starting from the early iterations, GA05
demonstrated the fastest decline in fitness, reaching low values in a short time. However, midway through
the process, the rate of decline slowed, and it transitioned into a more stable convergence pattern.
Meanwhile, GA03 and GA02, though initially declining more gradually than GAO5, consistently improved
in later iterations, and by the end, all three algorithms converged to similarly high-quality solutions.

To evaluate the optimization results at the waveform level, the switching angles corresponding to the Median
metric for each algorithm and scenario were applied to a CHB-MLI model developed in
MATLAB/Simulink. The output voltage waveforms were analyzed by extracting their harmonic spectra,
which included the amplitudes of the fundamental component and harmonics up to the 10th order, along
with THD levels. The corresponding simulation results are presented in Tables 5-8 and Figures 10-13.

As observed in the results, the THD levels and fundamental component errors are generally consistent with
the previously reported fitness values, since these targets were explicitly incorporated into the fitness
function. These additional simulation findings visually confirm the quality of the obtained solutions and

provide further insights into the waveform-level behavior of the algorithms.

As expected, in the first scenario—characterized by limited population size and low iteration count—the
overall performance of the algorithms remained constrained, with none of them achieving a THD value
below 1%. Moreover, in some algorithms, a trade-off between the two optimization targets was observed;
while THD was reduced, the voltage error increased, or vice versa. Nevertheless, GA02 and GA06, which
prioritize diversity, outperformed the others under these constraints by achieving lower THD and voltage
error levels, highlighting the advantage of diversity-oriented structures in resource-constrained

environments.

In contrast, the fourth scenario, with its large population size and extended evolutionary duration, led to
improved overall performance across all algorithms. All achieved THD values below 1%, and the highest
voltage error remained within 1.6%. Despite this general improvement, GA02, GA03, and GAO5—each
employing strong and controlled elitist strategies—distinctly outperformed the remaining algorithms in

terms of both harmonic suppression and fundamental component accuracy
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Table 5 Optimal switching angles and simulation results for Median metric (N=20,T=20)

Fitness Optimal Switching Angles (8) % THD % Error
Algorithms

Scores 0, 0, 04 0, 0. Until 10th  V; Voltage
GA01 85.3245 7.9465 18.3534 29.7735 45.8827 65.4568 2.93 -0.32
GA02 53.5927 1.5109 23.3400 36.4685 60.9955 89.8899 1.03 -18.36
GA03 59.8713 11.6788 15.9557 35.1780 53.7048 83.7996 1.90 -12.04
GA04 75.7216 10.0911 15.0053 34.0250 51.6044 83.9939 2.33 -10.84
GAO05 88.4709 3.1617 18.7100 29.9396 41.0352 (7.7889 3.11 0.36
GA06 48.1857 4.9903 20.2231 33.9298 53.5520 85.7324 1.52 -12.68

Table 6 Optimal switching angles and simulation results for Median metric (N=20,T=100)

Fitness Optimal Switching Angles () % THD % Error
Algorithms

Scores 0, 0, 0, 0, 0 Until 10th  V; Voltage
GA01 352412 1.4836  20.7879 27.1360 45.4366 65.2832 1.91 0.36
GA02 15.2062 8.7132 13.4753 32.6415 41.8628 65.4789 1.26 0.8
GAO03 14.8000 1.2217 20.2579 28.1440 42.7254 64.3385 1.10 1.44
GA04 30.5692  9.4952 13.0744 36.6930 37.5135 64.5422 1.92 1.4
GAO05 10.1239  3.0639 18.1193 29.3707 43.7832 64.5049 0.77 1.08
GAO06 16.4486 3.9476 17.5527 30.5590 41.3452 65.1237 1.20 1.36

Table 7 Optimal switching angles and simulation results for Median metric (N=100,T=20)

Fitness Optimal Switching Angles (6) % THD % Error
Algorithms

Scores 0, 0, 04 0, 0< Until 10th V; Voltagi
GA01 32,9837  0.6173  19.2967 29.2596 45.5644 65.6026 1.56 -0.04
GA02 17.9718  9.2698 14.1192 32.0693 43.3065 66.3290 1.21 0.08
GA03 12.9656  4.1939 17.6740 28.6875 42.8704 63.5129 0.97 1.92
GA04 21.8115 5.6635 16.4219 31.2042 41.7955 61.7783 1.16 2.48
GAO05 10.3718 10.0673 13.3050 31.9323 42.9492 65.3629 0.80 0.6
GA06 20.8530  3.0644 17.1574 29.8408 40.7698 61.9660 0.94 3

Table 8 Optimal switching angles and simulation results for Median metric (N=100,T=100)

Fitness Optimal Switching Angles (8) % THD % Error
Algorithms

Scores 01 0, 0 0, 0= Until 10th  V; Voltage
GA01 10.6678 0.0314 19.4255 28.5023 42.4662 (64.3338 0.81 1.56
GA02 51320 0.3848 18.9488 29.4598 42.7833 63.6613 0.23 1.6
GAO03 51953 0.0580 19.0705 29.0255 43.0818 63.8637 0.33 1.52
GA04 8.6848 2.0110 18.2852 29.1365 42.6399 62.6593 0.59 2.2
GAO5 47604 41916 17.6921 30.1474 42.6098 63.9630 0.23 1.48
GAO06 7.5069 4.7167 17.2323 30.8623 42.8791 64.6001 0.61 1.04
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Figure 10 Frequency spectrum and fundamental harmonic values of algorithms at N=20, T=20

(a) GAO1; (b) GA02; () GAO3; (d) GAO4; (€) GAO5; () GAO6
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Figure 12 Frequency spectrum and fundamental harmonic values of algorithms at N=100, T=20

(a) GAO1; (b) GA02; () GAO3; (d) GAO4; (€) GAO5; () GAO6
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Figure 13 Frequency spectrum and fundamental harmonic values of algorithms at N=100, T=100

(a) GAOL; (b) GA02; (c) GAO3; (d) GAO4; (e) GAO5; (f) GAOG
5. Conclusions

In this study, six genetic algorithm variants employing different generation replacement strategies were
evaluated in terms of the balance between diversity and elitism and comparatively analyzed on a real-world
optimization problem. The results obtained under four scenarios representing different resource conditions
revealed that the performance of the algorithms depends not only on their structural design but also
significantly on the resource profile of the environment in which they are applied. While strategies with
strong elitism demonstrated supetior performance in scenarios with high population sizes and iteration
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counts, diversity-oriented approaches stood out particularly in resource-constrained settings. These findings
emphasize that, rather than secking a universally superior algorithm, selection should be based on the
principle of suitability to the specific problem and available resources.

These results offer a concrete roadmap for identifying which type of generation replacement strategy may
be more effective under which resource conditions in real-world optimization problems. This evaluation
approach can potentially be extended beyond genetic algorithms and adapted to other metaheuristic
algorithms. In particular, conducting similar comparative analyses on multi-objective or constrained
optimization problems may further strengthen the scope and validity of the insights obtained.
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