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1. Introduction 
Genetic Algorithm (GA) is a population-based metaheuristic optimization method inspired by evolutionary 
processes observed in nature. Originally introduced by John Holland (Holland, 1992), this approach aims to 
solve a given optimization problem through an iterative computational process based on biological 
mechanisms such as natural selection, genetic crossover, and mutation. One of the most critical aspects of 
the algorithm is the establishment of a fitness evaluation mechanism that mimics the evolutionary principle 
wherein individuals better adapted to environmental conditions have a higher chance of survival and gene 
propagation. Accordingly, a fitness (objective) function must be defined in a way that both satisfies system 
requirements and respects problem-specific constraints. Individuals in the population are evaluated 
throughout various stages of the algorithm based on the values obtained from this function. 

The algorithm begins with a population composed of individuals, each representing a potential solution to 
the given problem, and the initial fitness scores of these individuals are calculated based on the defined 
objective function. Following this initial stage, the iterative process begins. At the start of each iteration, a 

Abstract: In this study, generation replacement strategies used in genetic 
algorithms are comparatively analysed in the context of a real-world optimization 
problem, with a focus on the balance between elitism and diversity. The problem 
under consideration involves solving the equations of the Selective Harmonic 
Elimination (SHE) method, which is widely used for controlling Multilevel 
Inverters (MLIs). Six algorithms, each employing a different replacement 
mechanism, were tested under four distinct scenarios composed of various 
population sizes and iteration counts. The results were evaluated using 
fundamental statistical metrics, boxplots, and convergence curves. The findings 
reveal that elitist strategies perform better in large-population, long-duration 
scenarios, whereas approaches prioritizing diversity yield more effective results 
under limited resource conditions. This study systematically demonstrates the 
impact of different replacement strategies on optimization performance and offers 
valuable insights for strategy selection in real-world optimization problems. 

Keywords Genetic Algorithm, Replacement Strategy, Elitism, Diversity, Selective 
Harmonic Elimination (SHE), Multilevel Inverter (MLI) 

mailto:mcunkas@selcuk.edu.tr
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9609-7825


Electrical Engineering and Energy  

12  

subset of individuals is selected based on their fitness scores. These selected individuals are then subjected 
to small variations through various genetic operators in order to explore potentially better solutions. 

By the end of the iteration, a new generation is formed, which is expected to contain better alternatives in 
terms of overall solution quality. This new generation is referred to as the "offspring" while the generation 
at the beginning of the iteration is called the "parents". The fitness scores of the offspring are recalculated, 
and the individuals are reassigned as parents for the next iteration. This process continues until a satisfactory 
solution is reached or a predefined number of iterations is completed. 

GAs have been widely applied across various fields—from engineering to economics—due to their strong 
global search capability and effectiveness in solving complex problems that are multimodal, nonlinear, or 
subject to multiple constraints. This broad range of applications is evident in numerous studies, including 
optimal power flow in electrical grids (Bakirtzis et al., 2002; Osman et al., 2004), parameter tuning in control 
systems (J. Zhang et al., 2009), feature selection in machine learning (Halim et al., 2021; Smith & Bull, 2005), 
scheduling and routing optimization in manufacturing systems (Gen & Cheng, 1999), financial forecasting 
(Kim & Han, 2000) and supply chain and inventory management (Disney et al., 2000). 

The generation update phase performed at the end of each iteration ("Survivor Selection" or "Replacement") 
is not explicitly defined in the structure of the classical GA. More precisely, in the standard approach, no 
special method is applied during this phase; instead, the new generation (offspring) simply replaces the 
previous one (parents). However, this can result in the loss of potentially high-quality individuals from the 
earlier population, thereby slowing down the overall optimization process. To address this issue, various 
methods have been proposed in the literature in which certain individuals from the previous generation are 
preserved and transferred to the next generation either directly or through a specific selection process. These 
approaches are generally classified under the concept of "elitism" (Du et al., 2018). 

Studies in the literature generally have focused on the key components of genetic algorithms—such as 
selection, crossover, and mutation operations—that significantly affect their performance (Alhijawi & 
Awajan, 2024; Ali et al., 2020; Hassanat et al., 2019; Hong et al., 2002; Katoch et al., 2021; F. Zhang et al., 
2008). In contrast, generation update strategies are often treated as a fixed structural component and are 
rarely subjected to detailed analysis. In several existing studies, replacement methods are typically introduced 
as part of a newly proposed GA variant (Ahn & Ramakrishna, 2003), rather than being independently 
evaluated or compared with alternative approaches. In the limited number of studies that do involve 
comparisons, evaluations are mostly conducted using standard test functions (Brouwer et al., 2022), which 
often fail to reflect the dynamic and constrained nature of real-world optimization problems. 

In this study, the effects of different replacement strategies used in genetic algorithms were systematically 
compared in the context of solving the equations of the Selective Harmonic Elimination (SHE) method, 
which represents a real-world optimization problem. SHE is one of the most widely used control techniques 
in multilevel inverters (MLIs). The primary goal of this method is to eliminate specific harmonic components 
in the inverter output voltage while keeping the fundamental harmonic amplitude as close as possible to a 
desired reference value. To achieve this, mathematical expressions are derived for the relevant harmonics, 
where the switching angles are defined as variables. Satisfying all objectives simultaneously requires 
determining the optimal set of switching angles that solve these equations concurrently (Yang et al., 2017). 
However, due to the nonlinear structure and trigonometric nature of the equations, solving SHE becomes 
increasingly challenging as the number of inverter levels rises. 

Within this scope, six genetic algorithm variants were investigated; one with a standard structure and no 
replacement applied, and the remaining five employing different generation update mechanisms. The 
algorithms were tested under four different scenarios composed of various combinations of population sizes 
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and iteration counts, with independent runs conducted for each. The results were evaluated using key 
statistical metrics such as Best, Median, Worst, and Std (standard deviation), along with boxplot 
visualizations. Additionally, the solutions obtained were applied to the switching devices of a multilevel 
inverter modelled in MATLAB/Simulink, and the algorithms were further assessed based on fundamental 
component error and harmonic suppression performance in the output voltage. 

The findings of this study reveal that while elitist strategies used during the replacement phase positively 
impact GA performance, they also pose a risk of reducing population diversity in scenarios with limited 
resources, such as low population sizes and restricted iteration counts. 

In such cases, the rapid dominance of elite individuals within the population may lead to the premature 
elimination of individuals with relatively poor fitness but potential for long-term convergence to the global 
optimum. As a result, the algorithm’s overall exploratory ability weakens, and the likelihood of getting 
trapped in local minima increases. On the other hand, diversity-oriented approaches help mitigate this risk 
under resource-constrained conditions and enable a more effective exploration of the solution space. These 
results indicate that the replacement strategy chosen should not only preserve high-quality individuals but 
also maintain a balanced structure that sustains diversity depending on the problem environment. 

2. Switching Angle Determination via SHE in CHB-MLI Systems 
In conventional two-level inverters, the output voltage is generated by switching between only two fixed 
levels, typically +Vdc and –Vdc. In such systems, power switches are operated at high switching frequencies 
to rapidly alternate the output voltage between these two levels, aiming to approximate an ideal sinusoidal 
waveform. While this configuration is simple and cost-effective—due to its ability to operate with a single 
DC source and requiring fewer semiconductor components—it also presents some significant disadvantages 
(Bertin et al., 2023). Since the switches must handle high voltage levels during every transition, the lifespan 
of components is reduced, and the overall reliability of the system is compromised. Moreover, high switching 
frequencies considerably increase switching losses and electromagnetic interference (EMI). 

To overcome the issues observed in conventional two-level inverter structures, various MLI topologies have 
been developed (El-Hosainy et al., 2017). The core approach of these topologies is to generate the output 
voltage in a stepwise manner using multiple intermediate voltage levels, thereby producing a waveform that 
resembles a staircase. As a result, semiconductor devices switch lower voltage levels in each cycle, and this 
switching occurs only twice per half-cycle. Consequently, the need for high switching frequencies is reduced, 
which significantly minimizes losses, voltage stress on components, and EMI 

Among MLI topologies, one of the most widely adopted structures is the Cascaded H-Bridge Multilevel 
Inverter (CHB-MLI) (Sunddararaj et al., 2020). In this topology, multiple H-bridge inverter modules—each 
with identical specifications and supplied by an independent DC source—are connected in series. Each 
module contributes one voltage level to the staircase-shaped output waveform (Dahidah et al., 2015). As the 
number of modules increases, the number of steps in the waveform also increases, resulting in an output 
voltage that more closely approximates a sinusoidal form. In addition to the conventional advantages offered 
by multilevel inverters, the CHB-MLI topology provides a significant benefit in terms of structural 
modularity. Thanks to this modularity, the system can be easily reconfigured by adding or removing a module 
when a change in output voltage level is required. Furthermore, in the event of a fault or maintenance need, 
the affected module can be isolated and replaced without interfering with the entire system. This reduces 
maintenance time, simplifies servicing, and enhances overall system reliability.  

In the CHB-MLI topology, the output voltage waveform is defined by the switching angles that determine 
when each module contributes to the output. Since each module generates one voltage level in the staircase 
waveform, the number of switching angles corresponds to the number of modules used. Therefore, a system 
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with 𝑛𝑛 modules requires 𝑛𝑛 switching angles (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛). To accurately compute these angles, 𝑛𝑛 independent 
equations are needed. method provides a systematic approach for determining these angles (Lingom et al., 
2024). Among the resulting 𝑛𝑛 equations, one is formulated to match the fundamental component of the 
output voltage to the desired reference value, while the remaining 𝑛𝑛 − 1 equations are each constructed to 
eliminate a specific harmonic component. As a result, harmonic control in the SHE method emerges both 
as a direct objective and as a natural outcome of the switching angle calculation process 

In this study, the CHB-MLI configuration under consideration is a single-phase, 11-level inverter. 
Accordingly, five (𝑛𝑛 = 5) H-bridge inverter modules are employed, each supplied by a DC voltage source of 
50 V. The output voltage waveform presented in Figure 1 illustrates the stepwise structure formed by the 
contribution of each module. Here, 𝑉𝑉𝑥𝑥 (𝑥𝑥 = 1,2,3,4,5) represents the output voltage of the corresponding 
module. Each module is activated at its respective switching angle 𝜃𝜃𝑥𝑥 adding its voltage to the existing total 
and thereby increasing the output voltage to the next level. This process continues sequentially during each 
quarter-cycle, resulting in the desired multilevel voltage profile. 

 

 
Figure 1 The Output Voltage Waveform for a Single-Phase CHB-MLI 

Under the assumption of half-wave symmetry, even-order harmonic components are inherently eliminated 
from the output voltage waveform as shown in the figure. Furthermore, assuming that all DC sources are 
equal, a general expression can be defined for each odd harmonic component present in the output voltage. 
In this equation, ℎ and 𝑉𝑉ℎ represent the order of the odd harmonics in the output voltage (ℎ = 1,3,5 …) and 
the amplitude of the ℎ𝑡𝑡ℎ harmonic component, respectively. 𝜃𝜃𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎ switching angle (𝑖𝑖 = 1,2,3,4,5). 

𝑉𝑉ℎ =
4𝑉𝑉𝐷𝐷𝐷𝐷
ℎ𝜋𝜋

� cos(ℎ𝜃𝜃𝑖𝑖)
5

𝑖𝑖=1

 (1) 

Within the scope of the SHE method, an algebraic system of equations is derived from the general expression 
above to regulate the desired fundamental component level in the output voltage while suppressing 
undesired harmonics. These equations represent the amplitudes of the harmonic components expressed as 
functions of the switching angles. Among them, one corresponds to the fundamental component (ℎ = 1), 
while the remaining four represent the amplitudes of the targeted harmonics to be eliminated (ℎ = 3,5,7,9). 
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The primary objective of the optimization algorithms examined in this study is to numerically solve this 
system of equations to determine valid switching angles that satisfy the defined criteria. 

3. Generation Update Strategies in Genetic Algorithms 
In genetic algorithms, generation replacement (also referred to as survivor selection) is a critical phase that 
determines how the newly generated population at the end of an iteration is transferred to the next 
generation. This process plays a direct and essential role in preserving genetic diversity, preventing premature 
convergence, and improving overall solution quality. Replacement strategies are based on different rules 
regarding how the parent and offspring populations are compared, which individuals are preserved, and 
which are eliminated.  

In this study, several alternative replacement strategies to the classical approach were evaluated, and their 
effects on the SHE problem were comparatively analyzed. Within this scope, a standard real-coded GA 
framework was employed across all variants to ensure consistency. Each individual 𝑋𝑋𝑖𝑖 in the population of 
size 𝑁𝑁 was defined as a solution vector composed of five switching angles 𝜃𝜃𝑗𝑗  (𝑗𝑗 = 1,2, … ,5), as expressed in 
Equation 2. These angles must satisfy the constraint provided in Equation 3. In all algorithms, the selection 
process was carried out using the roulette wheel method, single-point crossover was applied during the 
crossover phase, and a basic mutation strategy was used.  

𝑋𝑋𝑖𝑖 = (𝜃𝜃1,𝜃𝜃2,𝜃𝜃3,𝜃𝜃4,𝜃𝜃5)  𝑖𝑖 ∈ {1,2, … ,𝑁𝑁} (2) 

0 ≤ 𝜃𝜃1 < 𝜃𝜃2 < 𝜃𝜃3 < 𝜃𝜃4 < 𝜃𝜃5 ≤ 𝜋𝜋 2⁄  (3) 

In the algorithms under investigation, the fitness function derived from the SHE equations was defined in 
Equation 4 to evaluate the individuals in the population (Bektaş et al., 2023). This function is formulated 
based on a two-component error structure. The first term, 𝑓𝑓1(𝑋𝑋𝑖𝑖), represents the difference between the 
obtained fundamental component amplitude and the desired reference value (𝑉𝑉1𝑟𝑟𝑟𝑟𝑟𝑟). The second term 𝑓𝑓2(𝑋𝑋𝑖𝑖), 
evaluates the suppression level of undesired harmonic components corresponding to the 3rd, 5th, 7th and 9th 
harmonic orders. During this evaluation, weighting coefficients (𝑤𝑤 = 2.5, 2, 1.5, 1) were applied to assign 
greater importance to lower-order harmonics, making them a higher priority in the optimization process. As 
a result, minimizing the fitness value leads to a solution where the fundamental component closely matches 
the target value while the unwanted harmonics are effectively suppressed. 

𝑓𝑓(𝑋𝑋𝑖𝑖) = �𝑓𝑓1(𝑋𝑋𝑖𝑖) + 𝑓𝑓2(𝑋𝑋𝑖𝑖)� (4) 

𝑓𝑓1(𝑋𝑋𝑖𝑖) = �𝑉𝑉1𝑟𝑟𝑟𝑟𝑟𝑟 −
4𝑉𝑉𝐷𝐷𝐷𝐷
𝜋𝜋

� cos�𝑋𝑋𝑖𝑖,𝑗𝑗�
5

𝑗𝑗=1

� (5) 

𝑓𝑓2(𝑋𝑋𝑖𝑖) = �
4𝑉𝑉𝐷𝐷𝐷𝐷
𝜋𝜋

�
2
�𝑤𝑤𝑘𝑘 �

1
ℎ𝑘𝑘
� cos�ℎ𝑘𝑘𝑋𝑋𝑖𝑖,𝑗𝑗�
5

𝑗𝑗=1

�

24

𝑘𝑘=1

 

ℎ = 3, 5, 7, 9  𝑤𝑤 = 2.5, 2, 1.5, 1 

(6) 

The first algorithm included in the comparison, GA01, is the standard genetic algorithm without any 
replacement strategy applied. In this structure, the offspring individuals (𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)) generated through 
selection, crossover, and mutation in each iteration are directly assigned as the parents of the next iteration 
(𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1)), as shown in Equation 7, while the current iteration's parents (𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)) are discarded. As a 
result, the population is completely replaced in every generation. This technique is commonly referred to in 
the evolutionary algorithms literature as the (𝜇𝜇, 𝜆𝜆) selection strategy. 
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𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) = 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡),𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) = 𝐹𝐹𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) (7) 

The second algorithm compared (GA02) corresponds to the structure commonly known in the literature as 
the elitist GA. In this method, at the beginning of each iteration, the 𝑛𝑛 best-performing individuals based on 
fitness are selected and stored as elite individuals 𝑋𝑋𝑒𝑒 (Equation 8). At the end of the iteration, the 𝑛𝑛 worst-
performing individuals 𝑋𝑋𝑤𝑤 among the offspring are identified (Equation 9) and directly replaced with the 
previously saved elites (Equation 10). After this replacement, the updated offspring population—including 
the elites—is used as the parent population for the next iteration, as in the standard GA. In this approach, 
the elite individuals are transferred to the next generation without being subjected to any additional 
comparison or selection mechanism. 

𝑋𝑋𝑒𝑒(𝑡𝑡) = {𝑋𝑋1𝑒𝑒 ,𝑋𝑋2𝑒𝑒 , … ,𝑋𝑋𝑛𝑛𝑒𝑒} 
(8) 

𝑓𝑓1𝑒𝑒 ≤  𝑓𝑓2𝑒𝑒 … ≤  𝑓𝑓𝑛𝑛𝑒𝑒 

𝑋𝑋𝑤𝑤(𝑡𝑡) = {𝑋𝑋1𝑤𝑤 ,𝑋𝑋2𝑤𝑤 , … ,𝑋𝑋𝑛𝑛𝑤𝑤} 
(9) 

𝑓𝑓1𝑤𝑤 ≥  𝑓𝑓2𝑤𝑤 … ≥ 𝑓𝑓𝑛𝑛𝑤𝑤 

𝑋𝑋𝑘𝑘𝑤𝑤 ← 𝑋𝑋𝑘𝑘𝑒𝑒    𝑘𝑘 = 1,2, … ,𝑛𝑛 (10) 

The third algorithm (GA03) is based on a tournament-based replacement strategy with random pairing. In 
this method, at the end of each iteration, a tournament is conducted between the parent population and the 
newly generated offspring population. For this purpose, as defined in Equation 10, an index array is created 
by randomly selecting non-repeating integers from the range [1,𝑁𝑁] to represent the offspring individuals. 
Then, each parent individual 𝑋𝑋𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) is paired and compared with the corresponding offspring individual 
𝑋𝑋𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) from the index array, as shown in Equation 11. The individual with the better fitness value is selected 

for transfer to the next generation. 

𝑝𝑝 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑁𝑁) (11) 

𝑋𝑋𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) = �

𝑋𝑋𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡), 𝑓𝑓𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) < 𝑓𝑓𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)

𝑋𝑋𝑘𝑘
𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡), 𝑓𝑓𝑘𝑘

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) > 𝑓𝑓𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡)

 𝑖𝑖 = 1,2, … ,𝑁𝑁 (𝑘𝑘 = 𝑝𝑝𝑖𝑖) (12) 

The fourth algorithm (GA04) adopts a roulette wheel-based replacement strategy. In this structure, the 
current parent population 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) and the newly generated offspring population 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) are combined into 
a unified pool 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) consisting of 2𝑁𝑁 individuals (Equation 13). For each individual in this pool, selection 
probabilities 𝑝𝑝𝑖𝑖 are calculated by taking the inverse of their fitness values and normalizing them, followed by 
computation of cumulative selection probabilities 𝑝𝑝𝑘𝑘𝑖𝑖 (Equation 14). Using these cumulative probabilities, 
individuals corresponding to randomly generated numbers in the range [0,1] are selected, and a new parent 
population 𝑋𝑋𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) consisting of 𝑁𝑁 individuals is formed (Equation 15) 

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = �𝑋𝑋𝑝𝑝𝑝𝑝𝑟𝑟(𝑡𝑡) ∪ 𝑋𝑋𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡)� (13) 

𝑝𝑝𝑖𝑖 =
1/𝑓𝑓𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠
   𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 = � 1/𝑓𝑓𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐

2𝑁𝑁

𝑖𝑖=1

 

𝑖𝑖 = 1,2, … ,2𝑁𝑁 (14) 

𝑝𝑝𝑘𝑘𝑖𝑖 = �𝑝𝑝𝑥𝑥

𝑖𝑖

𝑥𝑥=1
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𝑋𝑋𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) = �

𝑋𝑋1𝑐𝑐𝑐𝑐𝑐𝑐 0 < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑝𝑝𝑘𝑘1
𝑋𝑋2𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑘𝑘1 < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝑝𝑝𝑘𝑘2
⋮ ⋮
𝑋𝑋2𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑘𝑘2𝑁𝑁−1 < 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 1

 𝑖𝑖 = 1,2, … ,𝑁𝑁 (15) 

The fifth algorithm (GA05) is based on a ranking-based elitist replacement strategy. In this method, as shown 
in Equation 13, the parent population and the newly generated offspring population are merged into a 
common pool. The individuals in this pool are then ranked according to their fitness values (Equation 16), 
and the best 𝑁𝑁 individuals are directly selected to form the next generation population 𝑋𝑋𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) (Equation 
17). This strategy does not involve any comparison, probability, or selection mechanism; instead, it relies 
solely on absolute fitness ranking. This approach corresponds to the (𝜇𝜇 + 𝜆𝜆) selection strategy commonly 
used in evolutionary algorithms. 

𝑓𝑓1𝑐𝑐𝑐𝑐𝑐𝑐 ≤  𝑓𝑓2𝑐𝑐𝑐𝑐𝑐𝑐 … ≤  𝑓𝑓2𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐 (16) 

𝑋𝑋𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) = 𝑋𝑋𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡)   𝑓𝑓𝑖𝑖

𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) = 𝑓𝑓𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) 𝑖𝑖 = 1,2, … ,𝑁𝑁  (17) 

The sixth and final algorithm (GA06) implements a partial elitism-based replacement strategy that aims to 
preserve the best-performing individuals from both the parent and offspring populations while also giving 
a chance to lower-performing individuals from both generations. In this method, the current parent and 
offspring populations are first ranked separately according to their fitness values (Equation 18). From each 
population, 𝑞𝑞 individuals (𝑞𝑞 = 𝑁𝑁/4) in the top quartile are selected to form the subsets 𝑋𝑋1(𝑡𝑡) and 𝑋𝑋2(𝑡𝑡), 
respectively (Equation 19). Additionally, 𝑞𝑞 individuals are randomly selected from the remaining lower-
performing individuals in each population (from the range [𝑞𝑞 + 1,𝑁𝑁]), forming subsets 𝑋𝑋3(𝑡𝑡) and 𝑋𝑋4(𝑡𝑡) 
(Equation 20). Finally, the union of these four subsets constitutes a combined population 𝑋𝑋𝑐𝑐𝑜𝑜𝑜𝑜(𝑡𝑡) of 𝑁𝑁 
individuals, which is assigned as the parent population 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) for the next generation (Equation 21). 
This approach can be considered a hybrid structure that simultaneously promotes elitism and diversity and 
may be viewed as a variation of the previous replacement strategy. 

𝑓𝑓1
𝑝𝑝𝑝𝑝𝑝𝑝 ≤  𝑓𝑓2

𝑝𝑝𝑝𝑝𝑝𝑝 … ≤  𝑓𝑓𝑁𝑁
𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑓𝑓1

𝑜𝑜𝑜𝑜𝑜𝑜 ≤  𝑓𝑓2
𝑜𝑜𝑜𝑜𝑜𝑜 … ≤  𝑓𝑓𝑁𝑁

𝑜𝑜𝑜𝑜𝑜𝑜 (18) 

𝑋𝑋𝑖𝑖1(𝑡𝑡) = 𝑋𝑋𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡),𝑋𝑋𝑖𝑖2(𝑡𝑡) = 𝑋𝑋𝑖𝑖

𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) 𝑖𝑖 = 1,2, … , 𝑞𝑞   (𝑞𝑞 = 𝑁𝑁 4⁄ )  (19) 

𝑋𝑋𝑖𝑖3(𝑡𝑡) = {𝑋𝑋𝑟𝑟1
𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑋𝑋𝑟𝑟2

𝑝𝑝𝑝𝑝𝑝𝑝 , … ,𝑋𝑋𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝} 𝑟𝑟𝑟𝑟 ∈ {𝑞𝑞 + 1, 𝑞𝑞 + 2, … ,𝑁𝑁} 

𝑥𝑥 = 1,2, … , 𝑞𝑞 
(20) 

𝑋𝑋𝑖𝑖4(𝑡𝑡) = {𝑋𝑋𝑟𝑟1
𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑋𝑋𝑟𝑟2

𝑜𝑜𝑜𝑜𝑜𝑜 , … ,𝑋𝑋𝑟𝑟𝑟𝑟
𝑜𝑜𝑜𝑜𝑜𝑜} 

𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) = �𝑋𝑋1(𝑡𝑡) ∪ 𝑋𝑋2(𝑡𝑡) ∪ 𝑋𝑋3(𝑡𝑡) ∪ 𝑋𝑋4(𝑡𝑡)� → 𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡 + 1) = 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) (21) 

Generation replacement strategies are designed to prevent the loss of high-quality solutions. While the 
preservation of good individuals is commonly referred to as elitism in the literature, this approach also 
introduces the risk of gradually losing population diversity; one of the fundamental driving forces of 
evolutionary algorithms. Therefore, the balance between elitism and diversity plays a critical role in 
optimization problems. In this context, the algorithms examined in this study are evaluated with respect to 
their approaches to elitism and diversity as follows: 

• GA01, which does not incorporate any elitism mechanism, completely eliminates parent individuals 
after each iteration, regardless of their quality. Diversity is maintained solely through the effect of 
the variation operators applied to the offspring population. 

• The only difference between GA02 and the previous algorithm is the preservation of a small elite 
portion (5%) of the parent population. This limited intervention introduces a mild level of elitism 
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into the optimization process. However, since elite individuals are carried over to the next 
generation without any comparison or competition, this may result in the elimination of potentially 
superior offspring in the later stages of long-term iterations, where differences among individuals 
diminish. Apart from this, diversity is maintained (as in GA01) only through the offspring, with no 
contribution from the previous generation. 

• The tournament structure in GA03 ensures that individuals with better (i.e., lower) fitness values 
are largely preserved in the population, indicating a strong elitist characteristic. However, because 
pairings are made randomly, there is always a possibility that two weak individuals may compete 
against each other. This helps prevent diversity from being completely lost and allows the partial 
retention of individuals who, despite low current performance, may hold potential in the 
evolutionary process. 

• GA04, which uses a roulette wheel-based selection, combines the parent and offspring populations 
into a shared pool, where individuals with better fitness values have a much higher probability of 
being selected for the next generation. Moreover, due to the stochastic nature of this approach, top-
performing individuals may be selected multiple times, increasing the risk of population dominance 
by a few elites. Although the probability of selecting low-performing individuals is not zero, it 
remains very low. Thus, compared to the tournament method, GA04 supports diversity to a lesser 
extent while applying elitism in a stricter and less controlled manner. 

• The principle of GA05 is purely deterministic, with no probabilistic components involved. After 
merging the parent and offspring populations, the top 𝑁𝑁 individuals are directly selected to form 
the next generation. The selection of the best individuals is guaranteed with 100% certainty, making 
GA05 more stable and reliable in terms of elitism compared to probabilistic approaches like roulette 
or tournament selection. However, because the selection is based on absolute ranking, even the best 
individual is chosen only once. This ensures that elitism is implemented effectively yet in a balanced 
way. As a result, while elite individuals are preserved, moderately fit individuals also have a chance 
to remain in the system helping to sustain diversity. That said, this strategy is intolerant toward 
weaker individuals: those with the worst fitness values are categorically excluded from the next 
generation. 

• GA06 aims to consciously balance elitism and diversity. As in GA05, the transfer of elite individuals 
is guaranteed, making the elitist aspect of this approach deterministic. However, unlike GA05, the 
elite individuals are selected separately from both the parent and offspring populations, and their 
total proportion is lower. Moreover, diversity is not left to the natural course of the evolutionary 
process; instead, it is actively promoted by applying positive selection bias in favour of weak 
individuals. While this guarantees the preservation of diversity, it also deliberately restricts the spread 
of elite solutions. Consequently, in long-term iterations, the suppressing effect on elite individuals 
may pose a risk of stagnation in solution quality. 

4. Results and Discussions 
In this study, the performance of six different GA variants employing distinct replacement strategies was 
compared in the context of solving the SHE equations. For this purpose, each algorithm was tested under 
four different scenarios. These scenarios were structured based on combinations of population size (𝑁𝑁) and 
number of iterations (𝑇𝑇), as outlined below: 

(i) 𝑁𝑁 = 20, 𝑇𝑇 = 20; (ii) 𝑁𝑁 = 20, 𝑇𝑇 = 100; (iii) 𝑁𝑁 = 100, 𝑇𝑇 = 20; (iv) 𝑁𝑁 = 100, 𝑇𝑇 = 100. 

The primary objective of designing this scenario structure is to evaluate how the algorithms perform under 
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both resource-constrained conditions (low 𝑁𝑁 and 𝑇𝑇) and conditions that allow for broader search capabilities 
(high 𝑁𝑁 and 𝑇𝑇). 

For each algorithm, 501 independent runs were performed in each scenario. In these runs, the objective 
function defined in Equation 4 was used to evaluate the quality of the solutions. The reference fundamental 
component amplitude (𝑉𝑉1𝑟𝑟𝑟𝑟𝑟𝑟) was set to 250 V. In each run, the best (i.e., lowest) fitness value achieved by 
the algorithm was recorded. From the resulting set of 501 values, the performance metrics Best, Median, 
Worst, and Std (standard deviation) were computed and comparatively presented in the relevant tables 
(Tables 1-4)). To compare the distributions of these values, boxplots (Figures 2, 4, 6, 8) were included, and 
convergence curves (Figures 3, 5, 7, 9) were used to analyse the average progress trends of the algorithms 
throughout the iterations. 

The results for the first scenario are presented in Table 1 and Figures 2 and 3. This scenario represents a 
resource-constrained setting in which both the population size and the number of iterations are kept low. 
The limited number of iterations prevents the algorithms from fully demonstrating their optimization 
capabilities. Therefore, the ability to perform a fast and effective exploration of the search space becomes 
critically important. In this context, the small population size places the entire burden of exploration on the 
algorithm's capacity to maintain diversity. 

Table 1 Optimization results for N=20 and T=20 

Algorithms 
Statistical Summary of Fitness Values 

Best Median Worst Std 

GA01 12.2832 85.3245 269.2885 47.5573 

GA02 6.9794 53.5927 248.0116 44.6122 

GA03 5.8093 59.8713 250.0669 59.3952 

GA04 6.5139 75.7216 266.1919 57.9014 

GA05 5.5482 88.4709 268.7646 61.6239 

GA06 7.6176 48.1857 178.0961 28.7910 

 

According to the results, GA06, which enforces diversity structurally by design, stands out as the most 
successful algorithm in terms of both performance metrics and boxplot appearance. It is followed by GA02, 
which allows diversity to emerge naturally while applying a moderate and controlled level of elitism. Although 
the Median values of these two algorithms are close, GA06 exhibits a significantly lower Std value, indicating 
more consistent and stable outcomes. 

GA03, which partially allows weaker individuals to survive through tournament selection, ranks just behind 
these two. GA04, while not as tolerant to diversity as GA03, still offers more flexibility than GA05, placing 
it next in line. GA05, where elitism is dominant and diversity is nearly disregarded, performs similarly to the 
standard GA01, and in some cases even worse. Notably, the convergence curves in Figure 3b clearly show 
that the final performance ranking of the algorithms aligns precisely with the extent to which each strategy 
supports diversity. 

The results for the second scenario are presented in Table 2 and Figures 4 and 5. This scenario represents a 
longer evolutionary process combined with a small population size. This combination is particularly valuable 
for observing the algorithms’ abilities to maintain diversity and their long-term convergence behaviour. 
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Table 2 Optimization results for N=20 and T=100 

Algorithms 
Statistical Summary of Fitness Values 

Best Median Worst Std 

GA01 6.5454 35.2412 99.8045 19.7326 

GA02 4.6600 15.2062 54.7889 13.4916 

GA03 4.5360 14.8900 115.6199 18.8921 

GA04 5.6908 30.5692 104.0617 18.7601 

GA05 4.5427 10.1239 111.7354 21.6504 

GA06 5.0021 16.4486 70.5006 13.8457 

 
 

 
Figure 2 Boxplot graphic of the algorithms for N=20, T=20 

 

 
      (a)                                                                                                (b) 

Figure 3 Convergence curves of the algorithms for N=20, T=20; (a) normal, (b) magnified view 
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The results indicate that, compared to the first scenario, all algorithms achieved lower fitness values and the 
performance differences between them became more pronounced. Analysing the boxplots and statistical 
metrics, it is evident that the increased number of iterations—despite a fixed population size—enabled GA05 
to reveal its potential. GA05, which attained the lowest Median value by a significant margin, is followed by 
GA03, GA02, and GA06, respectively. However, the differences in Median values among these three 
algorithms are statistically negligible. 

 
Figure 4 Boxplot graphic of the algorithms for N=20, T=100 

 

 
(a)                                                                                    (b) 

Figure 5 Convergence curves of the algorithms for N=20, T=100; (a) normal, (b) magnified view 

 

The superiority previously achieved by GA06 and GA02 due to their diversity-oriented designs appears to 
have relatively diminished in this scenario, while algorithms with stronger elitist structures have begun to 
take the lead. Nonetheless, the balanced distribution in the boxplots and the low Std values of these two 
algorithms indicate that the positive influence of diversity is still present. 

On the other hand, although GA03 and GA05 performed well overall, their results include a substantial 
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number of outliers, which contributes to their relatively high standard deviation values. This suggests that 
under the current population size, elitist strategies have not yet achieved full effectiveness in eliminating low-
quality individuals. 

GA04, meanwhile, lagged behind these algorithms and exhibited a performance comparable to that of GA01. 

The convergence curves clearly reveal the optimization superiority of GA05 and the improved performance 
of GA03 compared to the previous scenario. Although GA06 and GA02 initially take the lead thanks to the 
advantages of diversity, they are eventually overtaken—first by GA03, and then by GA05. In the final phase 
of the iteration process, GA05 opens a significant gap, while the remaining algorithms conclude the process 
at relatively similar performance levels. 

The results for the third scenario are presented in Table 3 and Figures 6 and 7. This scenario is defined by a 
large population size combined with a limited number of iterations. Such a combination naturally provides 
diversity to the algorithms but does not offer sufficient time to enhance solution quality. In this context, 
unlike previous scenarios, population-induced diversity ceases to be an advantage, and elitist strategies 
capable of acting quickly in the early stages come to the forefront. 

This shift is most dramatically reflected in the performance of GA06. Although GA06 previously stood out 
due to its structural support for diversity, it fails to maintain that advantage under this scenario. On the 
contrary, the continued application of positive discrimination toward weak individuals and the limited 
selection of strong ones in a large population setting effectively turns its former advantage into a 
disadvantage. The decline in performance that began in the second scenario continues here as well, with 
GA06 falling even behind GA02. 

On the other hand, GA05 and GA03, which had previously appeared relatively disadvantaged due to short 
evolutionary durations, are now able to realize their potential thanks to the increased population size. GA05 
once again achieves the lowest Median value, as it did in the second scenario. The fact that this value is nearly 
identical to that of the previous scenario suggests that for GA05, there is little difference between having a 
large population versus a high iteration count. 

GA03 follows closely behind GA05, and the performance gap between them appears to have narrowed 
considerably compared to the previous scenario. This indicates that GA03 benefits slightly more from large 
population settings. 

The convergence curves preserve the overall structure observed earlier. However, a notable observation is 
that GA03 remains neck-and-neck with GA05 until almost the end of the process. In the final few iterations, 
GA05 gains a slight edge and finishes ahead. 

The results for the fourth and final scenario are presented in Table 4 and Figures 8 and 9. This scenario, 
characterized by both a large population size and a high number of iterations, represents the most ideal 
evolutionary conditions. This combination enables the algorithms to explore a wide solution space while 
also applying effective exploitation through the selection of high-quality individuals over an extended period. 

Therefore, under this scenario, the overall evolutionary performance of the algorithms is revealed in the 
clearest and most balanced manner. 

The results clearly demonstrate the impact of this ideal setting. GA05 once again emerged as the most 
successful algorithm, achieving the lowest Median value across all scenarios. This is further supported by its 
boxplot, which exhibits a narrow structure with very few outliers, indicating that the algorithm produced 
results that were not only good but also highly consistent. Additionally, GA05 achieved the lowest Std value 
by a significant margin. This confirms that the elitist strategy yields maximum efficiency when combined 
with a large population and an extended evolutionary process. 
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Table 3 Optimization results for N=100 and T=20 

Algorithms 
Statistical Summary of Fitness Values 

Best Median Worst Std 

GA01 5.7042 32.9837 97.1225 16.6028 

GA02 4.9312 17.9718 61.2656 12.8229 

GA03 4.5388 12.9656 81.0595 14.1293 

GA04 4.8124 21.8115 70.5730 15.7836 

GA05 4.4754 10.3718 107.9555 19.2538 

GA06 5.7045 20.8530 72.1362 13.5063 

 

 
Figure 6 Boxplot graphic of the algorithms for N=100, T=20 

 

 
(a)                                                                                    (b) 

Figure 7 Convergence curves of the algorithms for N=100, T=20; (a) normal, (b) magnified view 
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Table 4 Optimization results for N=100 and T=100 

Algorithms 
Statistical Summary of Fitness Values 

Best Median Worst Std 

GA01 4.6144 10.6678 44.5221 11.3218 

GA02 4.3664 5.1320 41.8507 11.5785 

GA03 4.3605 5.1953 44.0698 8.9830 

GA04 4.4891 8.6848 42.8013 11.4411 

GA05 4.3387 4.7604 13.9133 1.2981 

GA06 4.5438 7.5069 44.6007 12.4250 

 

 
Figure 8 Boxplot graphic of the algorithms for N=100, T=100 

 

 
(a)                                                                                    (b) 

Figure 9 Convergence curves of the algorithms for N=100, T=100; (a) normal, (b) magnified view 
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GA02 managed to maintain its competitiveness over the long run, owing to its initial diversity advantage and 
balanced level of elitism. The performance of GA03 in this scenario also aligns well with previous trends. In 
terms of the Median metric, there is virtually no difference between GA02 and GA03, and the gap between 
either of them and GA05 remains relatively small. 

However, the main distinction becomes apparent in the standard deviation (Std) values. The Std values of 
GA02 and GA03 are notably higher than that of GA05. Between the two, GA03 appears to have produced 
slightly more consistent results. Although the boxplot of GA02 may initially suggest a narrower spread, its 
high Std value and the concentration of outliers above the box indicate greater variability in its results. 

As for GA06, the performance decline observed in previous scenarios continued. Even under this high-
population condition, its structure—designed to protect weak individuals—caused it to lag behind. GA04 
also underperformed, once again falling short of expectations and ranking among the worst-performing 
algorithms along with GA01. 

The convergence curves clearly reflect the overall trend. GA05, GA03, and GA02 distinctly separate 
themselves from the other algorithms throughout the process. Starting from the early iterations, GA05 
demonstrated the fastest decline in fitness, reaching low values in a short time. However, midway through 
the process, the rate of decline slowed, and it transitioned into a more stable convergence pattern. 
Meanwhile, GA03 and GA02, though initially declining more gradually than GA05, consistently improved 
in later iterations, and by the end, all three algorithms converged to similarly high-quality solutions. 

To evaluate the optimization results at the waveform level, the switching angles corresponding to the Median 
metric for each algorithm and scenario were applied to a CHB-MLI model developed in 
MATLAB/Simulink. The output voltage waveforms were analyzed by extracting their harmonic spectra, 
which included the amplitudes of the fundamental component and harmonics up to the 10th order, along 
with THD levels. The corresponding simulation results are presented in Tables 5–8 and Figures 10–13. 

As observed in the results, the THD levels and fundamental component errors are generally consistent with 
the previously reported fitness values, since these targets were explicitly incorporated into the fitness 
function. These additional simulation findings visually confirm the quality of the obtained solutions and 
provide further insights into the waveform-level behavior of the algorithms. 

As expected, in the first scenario—characterized by limited population size and low iteration count—the 
overall performance of the algorithms remained constrained, with none of them achieving a THD value 
below 1%. Moreover, in some algorithms, a trade-off between the two optimization targets was observed; 
while THD was reduced, the voltage error increased, or vice versa. Nevertheless, GA02 and GA06, which 
prioritize diversity, outperformed the others under these constraints by achieving lower THD and voltage 
error levels, highlighting the advantage of diversity-oriented structures in resource-constrained 
environments. 

In contrast, the fourth scenario, with its large population size and extended evolutionary duration, led to 
improved overall performance across all algorithms. All achieved THD values below 1%, and the highest 
voltage error remained within 1.6%. Despite this general improvement, GA02, GA03, and GA05—each 
employing strong and controlled elitist strategies—distinctly outperformed the remaining algorithms in 
terms of both harmonic suppression and fundamental component accuracy 
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Table 5 Optimal switching angles and simulation results for Median metric (N=20,T=20) 

Algorithms 
Fitness Optimal Switching Angles (𝜃𝜃) % THD  % Error 

Scores 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 𝜃𝜃4 𝜃𝜃5 Until 10th  V1 Voltage 

GA01 85.3245 7.9465 18.3534 29.7735 45.8827 65.4568 2.93 -0.32 

GA02 53.5927 1.5109 23.3400 36.4685 60.9955 89.8899 1.03 -18.36 

GA03 59.8713 11.6788 15.9557 35.1780 53.7048 83.7996 1.90 -12.04 

GA04 75.7216 10.0911 15.0053 34.0250 51.6044 83.9939 2.33 -10.84 

GA05 88.4709 3.1617 18.7100 29.9396 41.0352 67.7889 3.11 0.36 

GA06 48.1857 4.9903 20.2231 33.9298 53.5520 85.7324 1.52 -12.68 

 

Table 6 Optimal switching angles and simulation results for Median metric (N=20,T=100) 

Algorithms 
Fitness Optimal Switching Angles (𝜃𝜃) % THD  % Error 

Scores 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 𝜃𝜃4 𝜃𝜃5 Until 10th  V1 Voltage 

GA01 35.2412 1.4836 20.7879 27.1360 45.4366 65.2832 1.91 0.36 

GA02 15.2062 8.7132 13.4753 32.6415 41.8628 65.4789 1.26 0.8 

GA03 14.8900 1.2217 20.2579 28.1440 42.7254 64.3385 1.10 1.44 

GA04 30.5692 9.4952 13.0744 36.6930 37.5135 64.5422 1.92 1.4 

GA05 10.1239 3.0639 18.1193 29.3707 43.7832 64.5049 0.77 1.08 

GA06 16.4486 3.9476 17.5527 30.5590 41.3452 65.1237 1.20 1.36 

 

Table 7 Optimal switching angles and simulation results for Median metric (N=100,T=20) 

Algorithms 
Fitness Optimal Switching Angles (𝜃𝜃) % THD  % Error 

Scores 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 𝜃𝜃4 𝜃𝜃5 Until 10th  V1 Voltage 

GA01 32.9837 0.6173 19.2967 29.2596 45.5644 65.6026 1.56 -0.04 

GA02 17.9718 9.2698 14.1192 32.0693 43.3065 66.3290 1.21 0.08 

GA03 12.9656 4.1939 17.6740 28.6875 42.8704 63.5129 0.97 1.92 

GA04 21.8115 5.6635 16.4219 31.2042 41.7955 61.7783 1.16 2.48 

GA05 10.3718 10.0673 13.3050 31.9323 42.9492 65.3629 0.80 0.6 

GA06 20.8530 3.0644 17.1574 29.8408 40.7698 61.9660 0.94 3 

 

Table 8 Optimal switching angles and simulation results for Median metric (N=100,T=100) 

Algorithms 
Fitness Optimal Switching Angles (𝜃𝜃) % THD  % Error 

Scores 𝜃𝜃1 𝜃𝜃2 𝜃𝜃3 𝜃𝜃4 𝜃𝜃5 Until 10th  V1 Voltage 

GA01 10.6678 0.0314 19.4255 28.5023 42.4662 64.3338 0.81 1.56 

GA02 5.1320 0.3848 18.9488 29.4598 42.7833 63.6613 0.23 1.6 

GA03 5.1953 0.0580 19.0705 29.0255 43.0818 63.8637 0.33 1.52 

GA04 8.6848 2.0110 18.2852 29.1365 42.6399 62.6593 0.59 2.2 

GA05 4.7604 4.1916 17.6921 30.1474 42.6098 63.9630 0.23 1.48 

GA06 7.5069 4.7167 17.2323 30.8623 42.8791 64.6001 0.61 1.04 
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       (e)                                                                                     (f) 

Figure 10 Frequency spectrum and fundamental harmonic values of algorithms at N=20, T=20 

(a) GA01; (b) GA02; (c) GA03; (d) GA04; (e) GA05; (f) GA06 
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GA03 Fundamental (50Hz) = 219.9 , THD= 1.90%
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GA04 Fundamental (50Hz) = 222.9 , THD= 2.33%
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GA05 Fundamental (50Hz) = 250.9 , THD= 3.11%
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Figure 11 Frequency spectrum and fundamental harmonic values of algorithms at N=20, T=100 

(a) GA01; (b) GA02; (c) GA03; (d) GA04; (e) GA05; (f) GA06 
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GA02 Fundamental (50Hz) = 252 , THD= 1.26%
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GA03 Fundamental (50Hz) = 253.6 , THD= 1.10%
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GA05 Fundamental (50Hz) = 252.7 , THD= 0.77%
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Figure 12 Frequency spectrum and fundamental harmonic values of algorithms at N=100, T=20 

(a) GA01; (b) GA02; (c) GA03; (d) GA04; (e) GA05; (f) GA06 
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GA03 Fundamental (50Hz) = 254.8 , THD= 0.97%
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GA04 Fundamental (50Hz) = 256.2 , THD= 1.16%
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GA06 Fundamental (50Hz) = 257.5 , THD= 0.94%
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Figure 13 Frequency spectrum and fundamental harmonic values of algorithms at N=100, T=100 

(a) GA01; (b) GA02; (c) GA03; (d) GA04; (e) GA05; (f) GA06 

5. Conclusions 
In this study, six genetic algorithm variants employing different generation replacement strategies were 
evaluated in terms of the balance between diversity and elitism and comparatively analyzed on a real-world 
optimization problem. The results obtained under four scenarios representing different resource conditions 
revealed that the performance of the algorithms depends not only on their structural design but also 
significantly on the resource profile of the environment in which they are applied. While strategies with 
strong elitism demonstrated superior performance in scenarios with high population sizes and iteration 
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counts, diversity-oriented approaches stood out particularly in resource-constrained settings. These findings 
emphasize that, rather than seeking a universally superior algorithm, selection should be based on the 
principle of suitability to the specific problem and available resources. 

These results offer a concrete roadmap for identifying which type of generation replacement strategy may 
be more effective under which resource conditions in real-world optimization problems. This evaluation 
approach can potentially be extended beyond genetic algorithms and adapted to other metaheuristic 
algorithms. In particular, conducting similar comparative analyses on multi-objective or constrained 
optimization problems may further strengthen the scope and validity of the insights obtained. 
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